分析 (1)将直线l的参数方程代入曲线C的普通方程,令判别式等于0解出m;
(2)令判别式大于0解出m的取值范围,利用关于系数的关系得出|PA|•|PB|关于m的函数,根据m的范围解出.
解答 解:(1)曲线C的直角坐标方程为x2+y2=4,
将直线l的参数方程代入上式得:t2-$\sqrt{2}m$t+m2-4=0,
∵直线l与曲线C有且只有一个公共点,
∴(-$\sqrt{2}$m)2-4(m2-4)=0,解得m=$±2\sqrt{2}$.
(2)∵直线l与曲线C交于相异两点A,B,
∴(-$\sqrt{2}$m)2-4(m2-4)>0,解得-2$\sqrt{2}$<m<2$\sqrt{2}$.
设A,B对应的参数分别为t1,t2,则t1t2=m2-4.
∴|PA|•|PB|=|t1t2|=|m2-4|.
∵-2$\sqrt{2}$<m<2$\sqrt{2}$,∴0<m2<8,∴0≤|m2-4|<4.
∴|PA|•|PB|的取值范围是[0,4).
点评 本题考查了极坐标方程与直角坐标方程的转化,直线参数方程的几何意义与应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A=2,ω=2,φ=$\frac{3π}{4}$ | B. | A=2,ω=2,φ=$\frac{5π}{4}$ | C. | A=2,ω=$\frac{1}{2}$,φ=$\frac{3π}{4}$ | D. | A=2,ω=$\frac{1}{2}$,φ=$\frac{5π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | $-\frac{5}{2}$ | C. | -2 | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 9 | B. | -9 | C. | 7 | D. | -7 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20 | B. | 14 | C. | 10 | D. | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com