精英家教网 > 高中数学 > 题目详情
15.设集合A={1,2,a},B={1,a2-a},若B⊆A,求实数a的值.

分析 根据题意,若A?B,必有a2-a=2,或a2-a=a,分别解可得a的值,又有A={1,2,a},则a≠1,a≠2;在求出的a的值中,取舍可得答案.

解答 解:根据题意,若A?B,必有a2-a=2,或a2-a=a,
①当a2-a=2时,解可得a=-1或2,
②当a2-a=a,解可得a=0或2,
又有A={1,2,a},则a≠1,a≠2;
则a=-1或0.

点评 解此类集合问题时,时刻注意集合元素的互异性,否则容易产生增根.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xOy中,已知一动圆经过点(2,0)且在y轴上截得的弦长为4,设动圆圆心的轨迹为曲线C.
(1)求曲线C的方程;
(2)过点(1,0)作互相垂直的两条直线l1,l2,l1与曲线C交于A,B两点l2与曲线C交于E,F两点,线段AB,EF的中点分别为M,N,求证:直线MN过定点P,并求出定点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.一艘海轮从A处出发,以40海里/时的速度沿东偏南50°方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是东偏南20°,在B处观察灯塔,其方向是北偏东65°,求B,C两点间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx-a(x-1),其中a为实数.
(Ⅰ)讨论并求出f(x)的极值;
(Ⅱ)若x≥1时,不等式f(x)≤a(x-1)2恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.根据如下样本数据
x34567
y4a+b-4-0.50.5-2
得到的回归直线方程为$\hat y=bx+a$.若样本中心为(5,0.9),则x每减少1个单位,y就(  )
A.增加1.4个单位B.减少1.4个单位C.增加1.2个单位D.减少1.2个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设f(x)=$\frac{{e}^{x}}{1+a{x}^{2}}$,其中a为正实数,若f(x)为R上的单调递增函数,则a的取值范围是(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a,b表示两条不同的直线,α,β表示两个不重合的平面,给出下列四个命题:
①若α∥β,a?α,b?β,则a∥b;
②若a∥b,a∥α,b∥β,则α∥β;
③若α∥β,a?α,则a∥β;
④若a∥α,a∥β,则α∥β
其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某家电专卖店试销A,B,C三种新型空调,销售情况记录如表:
第一周第二周第三周第四周第五周
A型数量(台)101015A4A5
B型数量(台)101213B4B5
C型数量(台)15812C4C5
(Ⅰ)为跟踪调查空调的使用情况,根据销售记录,从该家电专卖店前三周售出的所有空调中随机抽取一台,求抽到的空调“是B型空调或是第一周售出空调”的概率;
(Ⅱ)为跟踪调查空调的使用情况,根据销售记录,从该家电专卖店第二周和第三周售出的空调中分别随机抽取一台,求抽取的两台空调中A型空调台数X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设等比数列{an}的前n项和为Sn,已知$\frac{{S}_{4}}{{S}_{2}}$=3,则2a2-a4的值是(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案