精英家教网 > 高中数学 > 题目详情
3.如图,网络纸的小正方形的边长是1,粗线画出的是一个几何体的三视图,其中正视图为等边三角形,则该几何体的体积为$\frac{(4+π)\sqrt{3}}{6}$.

分析 由几何体的三视图知该几何体是一个底面半径为1、高为$\sqrt{3}$的半圆锥和底为两腰为2的等腰直角形高为$\sqrt{3}$的三棱锥的组合体,由此能求出该几何体的体积.

解答 解:如图,由几何体的三视图知该几何体
是一个底面半径为1、高为$\sqrt{3}$的半圆锥和底为两腰为2的等腰直角形
高为$\sqrt{3}$的三棱锥的组合体,
∴该几何体的体积:
V=V半圆锥S-ADC+V三棱锥S-ABC
=$\frac{1}{3}×\frac{1}{2}(π×{1}^{2})$×$\sqrt{3}$+$\frac{1}{3}×(\frac{1}{2}×2×2)×\sqrt{3}$
=$\frac{(4+π)\sqrt{3}}{6}$.
故答案为:$\frac{(4+π)\sqrt{3}}{6}$.

点评 本题考查几何体的体积的求法,考查三视图、半圆锥、三棱锥的性质等基础知识,考查推理论证能力、空间想象能力、运算求解能力,考查数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.函数$f(x)=Asin(ωx+φ),(ω>0,-\frac{π}{2}<φ<\frac{π}{2})$的部分图象如图所示,则A,ω,φ的值分别是(  )
A.1,$2,-\frac{π}{6}$B.2,$2,-\frac{π}{3}$C.1,$4,-\frac{π}{6}$D.2,$4,\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow a$,$\overrightarrow b$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,|$\overrightarrow{a}$-$\overrightarrow{b}$|=2.
(1)求$(2\overrightarrow a+\overrightarrow b)•(\overrightarrow a-2\overrightarrow b)$的值;
(2)求|$\overrightarrow{a}$+$\overrightarrow{b}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知|$\overrightarrow a$|=1,|$\overrightarrow b$|=$\sqrt{2}$,$\overrightarrow a$与$\overrightarrow b$的夹角为θ.
(1)若$\overrightarrow a$∥$\overrightarrow b$,求$\overrightarrow a$•$\overrightarrow b$;
(2)若$\overrightarrow{a}$-$\overrightarrow b$与$\overrightarrow{a}$垂直,求θ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在平面直角坐标系xOy中,已知成$\overrightarrow{OA}$=(-1,t),$\overrightarrow{OB}$=(2,2),若∠ABO=90°,则实数t的值为(  )
A.1B.-3C.$\frac{1}{3}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)是定义在区间(0,+∞)上可导函数,其导函数为f'(x),且满足xf'(x)+2f(x)>0,则不等式$\frac{{({x+2017})f({x+2017})}}{5}$$<\frac{5f(5)}{x+2017}$的解集为(  )
A.{x|x>-2012}B.{x|x<-2012}C.{x|-2012<x<0}D.{x|-2017<x<-2012}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为2,4,4.现从这10人中随机选出2人作为该组代表参加座谈会.
(I)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;
( II)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.极坐标方程ρ2cos2θ+1=0表示的曲线是(  )
A.B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若集合A={1,2,3,4},B={x|x2-x-6≤0},则A∩B=(  )
A.{1}B.{1,2}C.{2,3}D.{1,2,3}

查看答案和解析>>

同步练习册答案