精英家教网 > 高中数学 > 题目详情
20.在锐角△ABC中,角A,B,C所对的边分别为a,b,c,已知a=bcosC+$\frac{\sqrt{3}}{3}$csinB.
(1)若a=2,b=$\sqrt{7}$,求c
(2)设函数y=$\sqrt{3}$sin(2A-30°)-2sin2(C-15°),求y的取值范围.

分析 (1)由已知利用正弦定理,三角函数恒等变换的应用化简可得tanB=$\sqrt{3}$,可求∠B=$\frac{π}{3}$,利用余弦定理即可解得c的值.
(2)利用三角函数恒等变换的应用化简可得y=$\sqrt{3}$sin(2A-60°)-1,结合范围A∈($\frac{π}{6}$,$\frac{π}{2}$),利用正弦函数的性质即可得解取值范围.

解答 (本题满分为12分)
解:(1)∵a=bccosC+$\frac{\sqrt{3}}{3}$csinB,
∴sinA=sinBcosC+$\frac{\sqrt{3}}{3}$sinCsinB,
∴cosBsinC=$\frac{\sqrt{3}}{3}$sinCsinB,
∴tanB=$\sqrt{3}$,
∴∠B=$\frac{π}{3}$.…(4分)
∵b2=a2+c2-2accosB,
∴c2-2c-3=0,
∴c=3.…(6分)
(2)∵y=$\sqrt{3}$sin(2A-30°)-2sin2(C-15°)
=$\sqrt{3}$sin(2A-30°)-1+2cos(2C-30°)
=$\sqrt{3}$sin(2A-30°)-cos(2A-30°)-1
=$\sqrt{3}$sin(2A-60°)-1,…(10分)
又∵△ABC为锐角三角形,
∴A∈($\frac{π}{6}$,$\frac{π}{2}$),
∴y∈(-1,1].…(12分)

点评 本题主要考查了正弦定理,三角函数恒等变换的应用,余弦定理,正弦函数的图象和性质在解三角形中的应用,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知a>0且满足不等式22a+1>25a-2
(1)求实数a的取值范围.
(2)求不等式loga(2x-1)<loga(7-5x).
(3)若函数y=loga(2x-1)在区间[1,3]有最小值为-2,求实数a值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数$y={(\frac{1}{3})^{|x|}}-1$的值域是(  )
A.[1,+∞)B.[0,+∞)C.(-∞,0]D.(-1,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥P-ABCD中,E为AD上一点,PE⊥平面ABCD.AD∥BC,AD⊥CD,BC=ED=2AE=2,EB=3,F为PC上一点,且CF=2FP.
(Ⅰ)求证:PA∥平面BEF;
(Ⅱ)求三棱锥P-ABF与三棱锥F-EBC的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=sin2x+sinx+cosx,以下说法中不正确的是(  )
A.f(x)周期为2πB.f(x)最小值为-$\frac{5}{4}$
C.f(x)在区间[0,$\frac{π}{2}$]单调递增D.f(x)关于点x=$\frac{π}{4}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合$A=\left\{{\left.x\right|\frac{x}{x-1}≥0,x∈R}\right\},B=\left\{{\left.y\right|y=3{x^2}+1,x∈R}\right\}$,则A∩B=(  )
A.(1,+∞)B.[1,+∞)C.(-∞,0]∪(1,+∞)D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=\frac{e^x}{{a{x^2}+bx+1}}$,其中a,b,c∈R.
(Ⅰ)若a=b=1,求函数f(x)的单调区间;
(Ⅱ)若a=0,且当x≥0时,f(x)≥1总成立,求实数b的取值范围;
(Ⅲ)若a>0,b=0,若f(x)存在两个极值点x1,x2,求证;f(x1)+f(x2)<e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.为了估计某校的一次数学考试情况,现从该校参加考试的600名学生中随机抽出60名学生,其成绩(百分制)均在[40,100)上,将这些成绩分成六段[40,50),[50,60)…[90,100),后得到如图所示部分频率分布直方图.
(1)求抽出的60名学生中分数在[70,80)内的人数;
(2)若规定成绩不小于85分为优秀,则根据频率分布直方图,估计该校优秀人数.
(3)根据频率分布直方图算出样本数据的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.不等式$\frac{3x-1}{4-x}$≤0的解集是{x|x≤$\frac{1}{3}$或x>4}.

查看答案和解析>>

同步练习册答案