分析 求出双曲线的渐近线方程,设两条渐近线的夹角为θ,由两直线的夹角公式,可得tanθ=tan∠AOB,求出F到渐近线y=$\frac{b}{a}$x的距离为b,即有|OB|=a,△OAB的面积可以表示为$\frac{1}{2}$•a•atanθ,结合条件可得a,b的关系,再由离心率公式即可计算得到.
解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的渐近线方程为y=±$\frac{b}{a}$x,
设两条渐近线的夹角为θ,
则tanθ=tan∠AOB=$\frac{\frac{b}{a}-(-\frac{b}{a})}{1+\frac{b}{a}•(-\frac{b}{a})}$=$\frac{2ab}{{a}^{2}-{b}^{2}}$,
设FB⊥OB,则F到渐近线y=$\frac{b}{a}$x的距离为d=$\frac{|bc|}{\sqrt{{a}^{2}+{b}^{2}}}$=b,
即有|OB|=a,
则△OAB的面积可以表示为$\frac{1}{2}$•a•atanθ=$\frac{{a}^{3}b}{{a}^{2}-{b}^{2}}$=$\frac{12{a}^{2}}{7}$,
解得$\frac{b}{a}$=$\frac{3}{4}$,
则e=$\frac{c}{a}$=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$=$\frac{5}{4}$.
故答案为:$\frac{5}{4}$.
点评 本题主要考查双曲线的几何性质,结合着较大的运算量,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 零件数x(个) | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
| 加工时间y(min) | 62 | 68 | 75 | 81 | 89 | 95 | 102 | 108 | 115 | 122 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ∅ | B. | {x|x>1} | C. | {x|-1<x<0} | D. | {x|-1<x<0或x>1} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{9}{4}$,-2]∪[0,2] | B. | (-$\frac{11}{4}$,-2]∪[0,2] | C. | (-$\frac{9}{4}$,-2]∪[0,2) | D. | (-$\frac{11}{4}$,-2]∪[0,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 平均数与方差 | B. | 回归直线方程 | C. | 独立性检验 | D. | 概率 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com