精英家教网 > 高中数学 > 题目详情
12.随机变量X的分布列如下:
X-1 0 1
 P a bc
其中a,b,c成等差数列,则P(|x|=1)=(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

分析 由随机变量X的分布列的性质得a+b+c=1,且a,b,c∈[0,1].由a,b,c成等差数列,得2b=a+c,从而能求出P(|x|=1)=P(X=-1)+P(X=1)的值.

解答 解:∵随机变量X的分布列如下:

X-101
Pabc
∴a+b+c=1,且a,b,c∈[0,1].①
∵a,b,c成等差数列,
∴2b=a+c,②
联立①②,得b=$\frac{1}{3}$,a+c=$\frac{2}{3}$,
∴P(|x|=1)=P(X=-1)+P(X=1)=a+c=$\frac{2}{3}$.
故选:D.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意随机变量的分布列和等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A,B,C的对边分别为a,b,c.
(1)若b=3,c=1,A=60°,求a;
(2)若a=30,b=10$\sqrt{3}$,A=60°,求B,C,c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.一个正四面体的体积为$\frac{2\sqrt{2}}{3}$,它的三视图中的俯视图如图所示(其中三个小三角形全等),侧视图是一个三角形,则这个三角形的面积是(  )
A.$\frac{\sqrt{6}}{3}$B.$\frac{2\sqrt{6}}{3}$C.$\frac{2\sqrt{2}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知ω>0,函数f(x)=cos(ωx+$\frac{π}{3}$)的一条对称轴为x=$\frac{π}{3}$,一个对称中心为点($\frac{π}{12}$,0),则ω的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求证:$\frac{1+sin2θ}{sinθ+cosθ}$=sinθ+cosθ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若|$\overrightarrow{a}$$+\overrightarrow{b}$|=|$\overrightarrow{a}-\overrightarrow{b}$|,则下列结论中,正确的是(4)(填序号).
(1)$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{0}$;
(2)$\overrightarrow{a}$=$\overrightarrow{0}$或$\overrightarrow{b}$=$\overrightarrow{0}$;
(3)|$\overrightarrow{a}$|=|$\overrightarrow{b}$|;
(4)$\overrightarrow{a}$•$\overrightarrow{b}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若sinα=$\frac{3}{5}$,求cos($α+\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列各式的值:
(1)cos105° 
(2)cos(-$\frac{25π}{12}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知{an}是各项均为正项的等比数列,且3a1,$\frac{1}{2}{a_3}$,2a2成等差数列,则$\frac{{{a_{2014}}+{a_{2015}}}}{{{a_{2012}}+{a_{2013}}}}$=(  )
A.3或-1B.9或1C.1D.9

查看答案和解析>>

同步练习册答案