分析 确定点的轨迹为抛物线,求出抛物线的焦点坐标,然后根据△OPF是等腰三角形,则OP=OF或OP=PF,然后分别进行求解即可.
解答 解:∵平面上到点(1,0)的距离与到直线1:x=-1距离相等,
∴点的轨迹为抛物线,抛物线C:y2=4x,焦点坐标为(1,0),
∵△OPF是等腰三角形,
∴OP=OF或OP=PF或OF=PF(舍去因抛物线上点不可能满足),
当OP=OF时,|PO|=|OF|=1,
当OP=PF时,点P在OF的垂直平分线上,则点P的横坐标为$\frac{1}{2}$,
点P在抛物线上,则纵坐标为±$\sqrt{2}$,
∴|PO|=$\sqrt{\frac{1}{4}+2}$=$\frac{3}{2}$,
综上所述:|PO|=$\frac{3}{2}$或1.
故答案为:$\frac{3}{2}$或1.
点评 本题主要考查了抛物线的简单性质,以及分类讨论的数学思想,同时考查了两点的距离公式的应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 7 | B. | 8 | C. | 6或7 | D. | 7或8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{2}$,1) | B. | (1,2) | C. | ($\frac{3}{2}$,3) | D. | (2,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com