精英家教网 > 高中数学 > 题目详情
20.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$,那么|4$\overrightarrow{a}$-$\overrightarrow{b}$|等于2$\sqrt{3}$.

分析 利用两个向量的数量积的定义求得$\overrightarrow{a}•\overrightarrow{b}$的值,再根据|4$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{{(4\overrightarrow{a}-\overrightarrow{b})}^{2}}$,计算求得结果.

解答 解:∵已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$,∴$\overrightarrow{a}•\overrightarrow{b}$=1•2•cos$\frac{π}{3}$=1,
∴|4$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{{(4\overrightarrow{a}-\overrightarrow{b})}^{2}}$=$\sqrt{{16\overrightarrow{a}}^{2}-8\overrightarrow{a}•\overrightarrow{b}{+\overrightarrow{b}}^{2}}$=$\sqrt{16-8+4}$=2$\sqrt{3}$,
故答案为:2$\sqrt{3}$.

点评 本题主要考查两个向量的数量积的定义,求向量的模的方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知定义在R上的函数y=f(x)满足函数y=f(x-1)的图象关于直线x=1对称,且当x∈(-∞,0),f(x)+xf'(x)<0成立(f'(x)是函数f(x)的导数),若$a=\frac{1}{2}f({{{log}_2}\sqrt{2}}),b=({ln2})f({ln2}),c=2f({{{log}_{\frac{1}{2}}}\frac{1}{4}})$,则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.脱贫是政府关注民生的重要任务,了解居民的实际收入状况就显得尤为重要.现从某地区随机抽取100个农户,考察每个农户的年收入与年积蓄的情况进行分析,设第i个农户的年收入xi(万元),年积蓄yi(万元),经过数据处理得$\sum_{i=1}^{100}{x_i}=500,\sum_{i=1}^{100}{y_i}=100,\sum_{i=1}^{100}{{x_i}{y_i}=1000,}\sum_{i=1}^{100}{x_i^2}=3750$.
(Ⅰ)已知家庭的年结余y对年收入x具有线性相关关系,求线性回归方程;
(Ⅱ)若该地区的农户年积蓄在5万以上,即称该农户已达小康生活,请预测农户达到小康生活的最低年收入应为多少万元?
附:在$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}{b}$=$\frac{{{\sum_{i=1}^{n}x}_{i}y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-{n\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,其中$\overline x,\overline y$为样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(3,-2),则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=(  )
A.$\sqrt{17}$B.1C.$\sqrt{7}$D.$\sqrt{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在正方形ABCD的边上任取一点M,则点M刚好取自边AB上的概率为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知四棱锥P-ABCD,底面ABCD为菱形,∠ABC=60°,△PAB是等边三角形,AB=2,PC=$\sqrt{6}$,AB的中点为E
(1)证明:PE⊥平面ABCD;
(2)求三棱锥D-PBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知a1=2,an≠0,且an+1-an=2an+1an,求an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知一个三棱锥的三视图如图所示,则该三棱锥外接球的表面积为(  )
A.17πB.16πC.D.20π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a=log35,b=log95,则有(  )
A.a>b>0B.0<a<bC.a<b<0D.0>a>b

查看答案和解析>>

同步练习册答案