精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=sinxcosx-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{2}$.
(1)求函数f(x)的周期;
(2)求函数f(x)在[-$\frac{π}{6}$,$\frac{2π}{3}$]的取值范围.

分析 (1)化简函数f(x)为Asin(ωx+φ)的形式,求出最小正周期;
(2)由x∈[-$\frac{π}{6}$,$\frac{2π}{3}$]求出相位的取值范围,再计算f(x)的取值范围即可.

解答 解:(1)函数f(x)=sinxcosx-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{2}$
=$\frac{1}{2}$sin2x-$\sqrt{3}×$$\frac{cos2x+1}{2}$+$\frac{\sqrt{3}}{2}$
=$\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$cos2x
=sin(2x-$\frac{π}{3}$),…(4分)
由T=$\frac{2π}{2}$得,最小正周期T=π;…(6分)
(2)∵x∈[-$\frac{π}{6}$,$\frac{2π}{3}$],∴-$\frac{2π}{3}$≤2x-$\frac{π}{3}$≤π,…(7分)
∴-1≤sin(2x-$\frac{π}{3}$)≤1,…(9分)
函数f(x)在[-$\frac{π}{6}$,$\frac{2π}{3}$]的取值范围:[-1,1].

点评 本题考查了三角函数的化简与形如f(x)=Asin(ωx+φ)+b的图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知集合M={x|y=ln(1-x)},集合N={y|y=3x,x∈R},则M∩N=(  )
A.{x|x<1}B.{x|x>1}C.{x|0<x<1}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合A={x|(x-1)(x-2)2=0},则集合A中元素的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆C的圆心在坐标原点,且过点M(1,$\sqrt{3}$).
(1)求圆C的方程;
(2)若直线l经过点M(1,$\sqrt{3}$)且与圆C相切,求直线l 的方程.
(3)已知点P是圆C上的动点,试求点P到直线x+y-4=0的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=x3-3x在[-3,$\frac{3}{2}$]上的最大值和最小值分别是(  )
A.2,-2B.2,-18C.18,-2D.18,-18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设a=log54,b=log0.55,c=log45,则(  )
A.a<c<bB.b<c<aC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC,且AB=BC=1,PA=$\sqrt{2}$,O为线段PC的中点,
(1)证明:BC⊥平面PAB;
(2)求直线PC与平面PAB所成的角;
(3)求三棱锥B-AOC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.将下列函数分解成基本初等函数或基本初等函数经过四则运算而复合的形式:
(1)y=arccos$\frac{3x+1}{2}$;
(2)y=e${\;}^{(\frac{1-{x}^{2}}{1+{x}^{2}})^{\frac{1}{2}}}$;
(3)y=sin2$\sqrt{x}$;
(4)y=e${\;}^{arctan{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设a>0,解关于x的不等式:2a(1-a)x2-2(1-a)x+1>0.

查看答案和解析>>

同步练习册答案