分析 对于任意的x1,总存在x2使f(x1)≥g(x2)成立成立,只需函数可以转化为f(x)min≥g(x)min,从而问题得解.
解答 解:若对任意x1∈[-1,3],存在x2∈[0,2],使得f(x1)≥g(x2)成立,
只需f(x)min≥g(x)min,
∵x1∈[-1,3],f(x)=x2∈[0,9],即f(x)min=0
x2∈[0,2],g(x)=($\frac{1}{2}$)x-m∈[$\frac{1}{4}$-m,1-m]
∴g(x)min=$\frac{1}{4}$-m
∴0≥$\frac{1}{4}$-m
∴m≥$\frac{1}{4}$,
故答案为:m≥$\frac{1}{4}$.
点评 本题主要考查函数恒成立问题以及函数单调性的应用,属于对基本知识的考查,是基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=|x| | B. | $y=\root{3}{x^3}$ | C. | $y=\sqrt{x^2}$ | D. | $y=\frac{x^2}{x}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com