精英家教网 > 高中数学 > 题目详情
4.一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:
人数xi(人)10152025303540
件数yi(件)471212202327
参考数据:$\sum_{i=1}^{7}$xiyi=3245,$\overline{x}$=25,$\overline{y}$≈15,$\sum_{i=1}^{7}$xi2=5075.
参考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x\overline{y}}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$
(1)由散点图可知进店人数和商品销售件数成线性相关关系,设回归方程为$\widehat{y}$=bx+a,求该回归方程(b保留到小数点后两位);
(2)预测进店80人时,商品销售的件数(结果保留整数).

分析 (1)根据所给的数据,做出x,y的平均数,即得到这组数据的样本中心点,根据最小二乘法做出线性回归方程的系数,写出线性回归方程.
(2)利用上一问做出的线性回归方程,把x的值代入方程,预报出对应的y的值

解答 解:(1).∵$\sum_{i=1}^{7}$xiyi=3245,$\overline{x}$=25,$\overline{y}$≈15,$\sum_{i=1}^{7}$xi2=5075,
∴b=$\frac{\sum _{i=1}^{7}{x}_{i}{y}_{i}-7\overline{x}\overline{y}}{\sum _{i=1}^{7}{x}_{i}^{2}-7{\overline{x}}^{2}}$=$\frac{3245-7×25×15}{5075-7×{25}^{2}}$≈0.89,…(6分)
a=$\overline{y}$-b$\overline{x}$=-7.25…(8分)
∴回归直线方程是y=0.89x-7.25…(9分)
(2)进店人数80人时,商品销售的件数$\hat{y}$=0.89×80-7.25≈64件,
即进店80人时,商品销售的件数约为64件.

点评 本题考查线性回归方程,考查最小二乘法求线性回归方程的系数,考查样本中心点的求法,本题的运算量比较大,是一个综合题目

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知某公司生产一种零件的年固定成本是3万元,每生产1千件,须另投入2万元,设该公司年内共生产该零件x千件并全部销售完,每1千件的销售收入为R(x)万元,且R(x)=$\left\{\begin{array}{l}{5.6-\frac{{x}^{2}}{30}(0<x≤10)}\\{\frac{133}{x}-\frac{1250}{{x}^{2}}(x>10)}\end{array}\right.$
(1)写出年利润W(x)(万元)关于年产量x(千件)的函数解析式;
(2)当年产量为多少千件时,该公司在这种零件的生产中所获利润最大?(注:年利润=年销售收入-年总成本)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知点B是点A(3,7,-4)在xOz平面上的射影,则$\overrightarrow{OB}$2等于25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若M点的极坐标为$({2,\frac{5π}{6}})$,则M点的直角坐标是(  )
A.(-$\sqrt{3}$,1)B.(-$\sqrt{3}$,-1)C.($\sqrt{3}$,-1)D.($\sqrt{3}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)是定义在R上的奇函数,且对任意x∈R都有f(x)=f(x+4),当x∈(0,2)时,f(x)=2x,则f(2015)+f(2012)的值为(  )
A.-2B.-1C.$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图程序图输出的结果是(  )
A.2,1B.2,2C.1,2D.1,1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,正四棱柱ABCD-A1B1C1D1中,AA1=2AB.
(1)点P为棱CC1上一动点,求证:AP⊥B1D1
(2)求AD1与平面A1CD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.320被5除所得的余数为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{ax}{{{x^2}+b}}$(a,b∈R).
(1)若f(x)在x=1处取得极值为2,求函数f(x)的解析式;
(2)若a≠0,且b=1时,求f(x)的单调区间和极值;
(3)在(2)的条件下,求函数f(x)在区间[-3,6]上的最小值.

查看答案和解析>>

同步练习册答案