精英家教网 > 高中数学 > 题目详情
7.已知三次函数f(x)=x3+bx2+cx+d的图象如图所示,求f(x)的表达式,并求出f(4)的值.

分析 由图象可知-1,0,2是方程f(x)=0的三个根,可设f(x)=x(x+1)(x-2),代入x=4,计算即可得到.

解答 解:由图象可知-1,0,2是方程f(x)=0的三个根,
则f(x)=x(x+1)(x-2),
即有f(x)=x3-x2-2x,
则f(4)=43-42-2×4=40.

点评 本题考查函数的解析式的求法和运用,主要考查由图象确定解析式的方法,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象如图所示,则f(1)=(  )
A.-$\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.以下命题,错误的是①②③(写出全部错误命题)
①若f(x)=x3+(a-1)x2+3x+1没有极值点,则-2<a<4
②f(x)=$\frac{mx+1}{x+3}$在区间(-3,+∞)上单调,则m≥$\frac{1}{3}$
③若函数f(x)=$\frac{lnx}{x}$-m有两个零点,则m<$\frac{1}{e}$
④已知f(x)=logax(0<a<1),k,m,n∈R+且不全等,$则f(\frac{k+m}{2})+f(\frac{m+n}{2})+f(\frac{k+n}{2})<f(k)+f(m)+f(n)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设f(x)=$\frac{1}{2}$sin2x+$\frac{\sqrt{3}}{2}$cos2x+$\frac{\sqrt{3}}{2}$+a(其中a∈R).
(1)求f(x)的最小正周期;
(2)若f(x)的最小值为$\frac{\sqrt{3}}{2}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=$\frac{1}{3}$mx3+(4+m)x2,g(x)=aln(x-1),其中a≠0.
(I)若函数y=g(x)图象恒过定点A,且点A关于直线x=$\frac{3}{2}$的对称点在y=f(x)的图象上,求m的值;
(Ⅱ)当a=8时,设F(x)=f′(x)+g(x+1),讨论F(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),过右焦点F且不与x轴垂直的直线l交椭圆于A,B两点,AB的垂直平分线交x轴于点N,求$\frac{NF}{AB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,已知PA是圆O的切线,切点为A,PC过圆心O,且与圆O交于B,C两点,过C点作CD⊥PA,垂足为D,PA=4,BC=6,那么CD=$\frac{24}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.画出函数y=x+sin|x|,x∈[-π,π]的大致图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.高三(3)班共有学生56人,座号分别为1,2,3,…,56,现根据座号,用系统抽样的方法,抽取一个容量为4的样本.已知3号、17号、45号同学在样本中,那么样本中还有一个同学的座号是(  )
A.30B.31C.32D.33

查看答案和解析>>

同步练习册答案