精英家教网 > 高中数学 > 题目详情
13.设向量$\overrightarrow{AB}=(1,2)$,$\overrightarrow{BC}=(-2,t)$,且$\overrightarrow{AB}•\overrightarrow{AC}=2$,则实数t的值为(  )
A.$\frac{3}{2}$B.$-\frac{3}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

分析 先求出$\overrightarrow{AC}$=$\overrightarrow{AB}+\overrightarrow{BC}$=(-1,2+t),再由$\overrightarrow{AB}•\overrightarrow{AC}=2$,利用向量数量积坐标运算法则能求出实数t的值.

解答 解:∵向量$\overrightarrow{AB}=(1,2)$,$\overrightarrow{BC}=(-2,t)$,
∴$\overrightarrow{AC}$=$\overrightarrow{AB}+\overrightarrow{BC}$=(-1,2+t),
∵$\overrightarrow{AB}•\overrightarrow{AC}=2$,
∴$\overrightarrow{AB}•\overrightarrow{AC}$=-1+4+2t=2,
解得实数t=-$\frac{1}{2}$.
故选:D.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意平面向坐标运算法则、向量数量积公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数g(x)=$\frac{a}{6}$x3-$\frac{1}{2}$x2,a∈R,其导函数为g′(x)
(1)设f(x)=lnx-g′(x),求函数f(x)的单调区间;
(2)函数f(x)=lnx-g′(x)的极值为正实数,求a的取值范围;
(3)当a=$\frac{3}{2e}$时,若函数y=g(x)+mx-lnx有零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知变量x,y满足约束条件$\left\{\begin{array}{l}x+y≥1\\ 3x+y≤3\\ x≥0\end{array}\right.$,则目标函数z=2x+y的最小值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知O,N,P在所在△ABC的平面内,且$|{\overrightarrow{OA}}|=|{\overrightarrow{OB}}|=|{\overrightarrow{OC}}|,\overrightarrow{NA}+\overrightarrow{NB}+\overrightarrow{NC}$=$\overrightarrow 0$,且$\overrightarrow{PA}•\overrightarrow{PB}=\overrightarrow{PB}•\overrightarrow{PC}=\overrightarrow{PA}•\overrightarrow{PC}$,则O,N,P分别是△ABC的(  )
A.重心  外心  垂心B.重心  外心  内心
C.外心  重心  垂心D.外心  重心  内心

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.数列{an}的通项公式an=ncos$\frac{nπ}{2}$,其前n项和为Sn,则S2013等于(  )
A.1006B.2012C.503D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设向量$\overrightarrow{AB}=(1,2),\overrightarrow{BC}=(-2,t)$,且$\overrightarrow{AB}$⊥$\overrightarrow{AC}$,则实数t的值是(  )
A.$\frac{3}{2}$B.$-\frac{3}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=cos(wx+φ)(w>0,0<φ<\frac{π}{2})$的最小正周期为π,且$f(\frac{π}{3})=-\frac{{\sqrt{3}}}{2}$.
(1)求w和φ的值;
(2)若$f(x)>\frac{1}{2}$,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知p:?x∈R,mx2+1>0,q:?x∈R,x2+mx+1≤0.
(1)写出命题p的否定?p,命题q的否定?q;
(2)若?p∨?q为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某校高三共有三个班,其各班人数如表:
班级男生数女生数总数
高三(1)302050
高三(2)303060
高三(3)352055
(1)从三个班中选一名学生会主席,有多少种不同的选法?
(2)从(1)班、(2)班男生中或从(3)班女生中选一名学生任学生会生活部部长,有多少种不同的选法?

查看答案和解析>>

同步练习册答案