精英家教网 > 高中数学 > 题目详情
已知函数y=x3-2,当x=2时,
△y
△x
=
 
考点:变化的快慢与变化率
专题:计算题,导数的概念及应用
分析:由题意,
△y
△x
=
(2+△x)3-2-(8-2)
△x
,即可得出结论.
解答: 解:由题意,
△y
△x
=
(2+△x)3-2-(8-2)
△x
=12+6△x+△2x.
故答案为:12+6△x+△2x.
点评:本题考查变化率,考查学生对定义的理解,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在菱形ABCD中,AB=BD=2,三角形PAD为等边三角形,将它沿AD折成大小为α(
π
2
<α<π
)的二面角P-AD-B,连接PC,PB.
(Ⅰ)证明:AD⊥PB;
(Ⅱ)当α=120°时,求PC与平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下试验不是古典概型的有(  )
A、从6名同学中,选出4名参加学校文艺汇演,每个人被选中的可能性大小
B、同时掷两枚骰子,点数和为7的概率
C、近三天中有一天降雪的概率
D、3个人站成一排,其中甲,乙相邻的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数a,b,c满足a2+b2+c2=1,则a2b2c2的最大值为
 
;a+b+c的最小值为
 
,3ab-3bc+2c2最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x+y+z=m,证明:x2+y2+z2
m2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是等差数列,Sn是{an}的前n项和,已知a7=-2,S5=30.
(1)求an
(2)若数列{bn}满足bn=(12-an
210-an
,Tn是{bn}的前n项和,求证:
Tn
bn
<2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

圆内有n条两两相交的弦讲圆最多分为f(n)个区域,通过计算f(1)、f(2)、f(3)、f(4)可猜想f(n)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项为正数的等比数列数列{an}的前n项和为Sn,数列{bn}的通项公式bn=
n,n为偶数
n+1,n为奇数
(n∈N*),若S3=b5+1,b4是a2和a4的等比中项.
(1)求数列{an}的通项公式;
(2)求数列{an•bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:
(1)
A
n+1
n+1
-
A
n
n
=n2
A
n-1
n-1

(2)
(n+1)!
k!
-
n!
(k-1)!
=
(n-k+1)×n!
k!
(k≤n)

查看答案和解析>>

同步练习册答案