精英家教网 > 高中数学 > 题目详情
已知各项为正数的等比数列数列{an}的前n项和为Sn,数列{bn}的通项公式bn=
n,n为偶数
n+1,n为奇数
(n∈N*),若S3=b5+1,b4是a2和a4的等比中项.
(1)求数列{an}的通项公式;
(2)求数列{an•bn}的前n项和为Tn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知得b5=6,b4=4,a1+a1q+a1q2=7a2a4=a32=16,从而q=2,a1=1,由此能求出数列{an}的通项公式.
(2)当n为偶数时,利用分组求和法和错位相减法能求出Tn=(n-1)•2n+1+
1-4
n
2
1-4
=(n-
2
3
)•2n+
2
3
.当n为奇数,且n≥3时,Tn=Tn-1+(n+1)•2n-1=(n-
5
3
)•2n-1+
2
3
+(n+1)•2n-1
=(2n-
2
3
)•2n-1
+
2
3
,由此能求出Tn
解答: 解:(1)∵数列{bn}的通项公式bn=
n,n为偶数
n+1,n为奇数
(n∈N*),
∴b5=6,b4=4,
设各项为正数的等比数列数列{an}的公比为q,q>0,
∵S3=b5+1=7,∴a1+a1q+a1q2=7,①
∵b4是a2和a4的等比中项,
a2a4=a32=16,解得a3=a1q2=4,②
由①②得3q2-4q-4=0,
解得q=2,或q=-
2
3
(舍),
∴a1=1,an=2n-1
(2)当n为偶数时,
Tn=(1+1)•20+2•2+(3+1)•22+4•23+(5+1)•24+…+[(n-1)+1]•2n-2+n•2n-1
=(20+2•2+3•22+4•23+…+n•2n-1)+(20+22+…+2n-2),
设Hn=20+2•2+3•22+4•23+…+n•2n-1,①
2Hn=2+2•22+3•23+4•24+…+n•2n,②
①-②,得-Hn=20+2+22+23+…+2n-1-n•2n
=
1-2n
1-2
-n•2n
=(1-n)•2n-1,
∴Hn=(n-1)•2n+1,
Tn=(n-1)•2n+1+
1-4
n
2
1-4
=(n-
2
3
)•2n+
2
3

当n为奇数,且n≥3时,
Tn=Tn-1+(n+1)•2n-1=(n-
5
3
)•2n-1+
2
3
+(n+1)•2n-1
=(2n-
2
3
)•2n-1
+
2
3

经检验,T1=2符合上式,
∴Tn=
(2n-
2
3
)•2n-1+
2
3
,n为奇数
(n-
2
3
)•2n+
2
3
,n为偶数
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,是中档题,解题时要认真审题,注意分类讨论思想、分组求和法和错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如图显示.
(1)已知[30,40)、[40,50)、[50,60)三个年龄段的上网购物者人数成等差数列,求a,b的值;
 (2)该电子商务平台将年龄在[30,50)之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放100元的代金券,现采用分层抽样的方式从参与调查的1000位上网购物者中抽取5人,并在这5人中随机抽取3人进行回访,求此三人获得代金券总和为200元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x3-2,当x=2时,
△y
△x
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x,y满足|x-1|+|y-a|≤1,若2x+y的最大值是5,则实数a的值是(  )
A、2B、1C、0D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:f(x)=
3
cos4x-2cos2(2x+
π
4
)+1,求最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:

两个圆锥有公共的底面,且底面圆周及两个顶点都在同一个球面上,如果这两个圆锥的体积比为1:3,且圆锥的底面积为6π,则这个球的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,
(1)已知a1+a4+a7=15,a3+a6+a9=3,求a5
(2)已知a3+a11=10,求a6+a7+a8
(3)已知a4+a5+a6+a7=56,a4a7=187,求a14及公差d.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC外一点S,且SA⊥平面ABC,∠ABC=90°,AM⊥SB,AN⊥SC
(1)求证:SC⊥平面AMN;
(2)如果SA=AC=2,∠BSC=θ,当tanθ取何值时,△AMN的面积最大,并求最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
π
4
<α<
π
2
,则
1-2sinαcosα
=
 

查看答案和解析>>

同步练习册答案