精英家教网 > 高中数学 > 题目详情
10.已知抛物线C:y2=6x,过抛物线的焦点F的直线l交抛物线于点A,交抛物线的准线于点B,若$\overrightarrow{FB}$=3$\overrightarrow{FA}$,则点A到原点的距离为$\frac{\sqrt{13}}{2}$.

分析 由抛物线方程求得焦点坐标,求得|DF|的长度,利用抛物线性质可求得|AF|=|AC|,$\overrightarrow{FB}$=3$\overrightarrow{FA}$可知|AB|=2|AF|=2|AC|,根据三角形可求得|BD|=3$\sqrt{3}$,利用相似三角形可求得|CA|、|CD|的值,即可求得A点坐标,利用两点间的距离公式求得A到原点的距离.

解答 解:抛物线C:y2=6x,准线垂直于x轴,垂足为D,|DF|=3,
由抛物线定义,A点到F点的距离等于A到准线的距离,即|AF|=|AC|,
$\overrightarrow{FB}$=3$\overrightarrow{FA}$,即|FB|=3|FA|,|AB|=2|AF|=2|AC|.
∴∠ABC=$\frac{π}{6}$,tan∠ABC=$\frac{丨DF丨}{丨BD丨}$,
∴|BD|=3$\sqrt{3}$,
由相似三角可知,|CA|=$\frac{2}{3}$|DF|=2,|CD|=$\frac{1}{3}$|BD|=$\sqrt{3}$,
A点横坐标为|AC|-$\frac{3}{2}$=$\frac{1}{2}$,
故A点的坐标为($\frac{1}{2}$,-$\sqrt{3}$),
∴点A到原点的距离为$\sqrt{\frac{1}{4}+3}$=$\frac{\sqrt{13}}{2}$,
故答案为:$\frac{\sqrt{13}}{2}$.

点评 本题考查直线与圆锥曲线的位置关系及抛物线的性质,考查学生计算能力及对问题的转化能力,属中档题,

练习册系列答案
相关习题

科目:高中数学 来源:2017届四川巴中市高中高三毕业班10月零诊理数试卷(解析版) 题型:选择题

已知全集,集合,则图中阴影部分所表示的集合为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,在平面直角坐标系xOy中,已知过点A(0,2)的直线与抛物线C:x2=2py(p>0)相交于两点M,N,与直线y=-2相交于点P(M位于A,P之间),直线OM平分∠POA.
(1)求抛物线C的方程;
(2)若抛物线C在Q点处的切线为l0,当点A到直线l0的距离最小时,求直线l0的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知抛物线C:x2=4y,过点P(t,0)(其中t>0)作互相垂直的两直线l1,l2,直线l1与抛物线C相切于点Q(Q在第一象限内),直线l2与抛物线C相交于A、B两点.
(Ⅰ)求证:直线l2恒过定点;
(Ⅱ)记直线AQ、BQ的斜率分别为k1,k2,当$k_1^2+k_2^2$取得最小值时,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,已知定点T(0,-4),动点Q,R分别在x,y轴上,且$\overrightarrow{TQ}•\overrightarrow{QR}=0$,点P为RQ的中点,点P的轨迹为曲线C,点E是曲线C上一点,其横坐标为2,经过点(0,2)的直线l与曲线C交于不同的两点A,B(不同于点E),直线EA,EB分别交直线y=-2于点M,N.
(I)求点P的轨迹方程;
(II)若O为原点,求证:$∠MON=\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设sin10°+cos10°<mcos(-215°),则m的取值范围为(  )
A.m>1B.$m>\sqrt{2}$C.m<-1D.$m<-\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知点A是抛物线C:x2=2py(p>0)上一点,O为坐标原点,若A,B是以点M(0,10)为圆心,|OA|的长为半径的圆与抛物线C的两个公共点,且△ABO为等边三角形,则p的值是$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,某城市有一个五边形的地下污水管通道ABCDE,四边形BCDE是矩形,其中CD=8km,BC=3km;△ABE是以BE为底边的等腰三角形,AB=5km.现欲在BE的中间点P处建地下污水处理中心,为此要过点P建一个“直线型”的地下水通道MN接通主管道,其中接口处M点在矩形BCDE的边BC或CD上.
(1)若点M在边BC上,设∠BPM=θ,用θ表示BM和NE的长;
(2)点M设置在哪些地方,能使点M,N平分主通道ABCDE的周长?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函象y=f(x)的图象与函数y=ax(a>0且a≠1)的图象关于直线y=x对称,记g(x)=f(x)[f(x)+2f(2)-1],若y=g(x)在区间[$\frac{1}{2}$,2]上是增函数,则实数a的取值范围是(0,$\frac{1}{2}$].

查看答案和解析>>

同步练习册答案