精英家教网 > 高中数学 > 题目详情
在△ABC中,
AD
=2
DC
BA
=
a
BD
=
b
BC
=
c
,则下列等式成立的是(  )
A、
c
=2
b
-
a
B、
c
=2
a
-
b
C、
c
=
3
a
2
-
b
2
D、
c
=
3
b
2
-
a
2
考点:向量加减混合运算及其几何意义
专题:平面向量及应用
分析:利用向量的三角形法则即可得出.
解答: 解:如图所示,
AD
=
AB
+
BD
DC
=
DB
+
BC
AD
=2
DC

AB
+
BD
=2(
DB
+
BC
)

-
a
+
b
=2(-
b
+
c
)

化为
c
=
3
2
b
-
1
2
a

故选:D.
点评:本题考查了向量的三角形法则,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某度假区以2014年索契冬奥会为契机,依山修建了高山滑雪场.为了适应不同人群的需要,从山上A处到山脚滑雪服务区P处修建了滑雪赛道A-C-P和滑雪练习道A-E-P(如图).已知cos∠ACP=一
5
5
,cos∠APC=
4
5
,cos∠APE=
2
3
,公路AP长为10(单位:百米),滑道EP长为6(单位:百米).
(Ⅰ)求滑道CP的长度;
(Ⅱ)由于C,E处是事故的高发区,为及时处理事故,度假区计划在公路AP上找一处D,修建连接道
DC,DE,问DP多长时,才能使连接道DC+DE最短,最短为多少百米?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,b>0,方程为x2+y2-4x+2y=0的曲线关于直线ax-by-1=0对称,则
3a+2b
ab
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

直线x+y=
2
与两坐标轴围成的三角形区域为D,在D内任取一点P(x,y),那么使得x2+y2≤1的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-a|(a∈R).
(Ⅰ)若a=2,求不等式f(x)<1的解集;
(Ⅱ)若不等式f(x)+|x+1|≥3在R上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

向边长分别为5,6,
13
的三角形区域内随机投一点M,则该点M与三角形三个顶点距离都大于1的概率为(  )
A、1-
π
18
B、1-
π
12
C、1-
π
9
D、1-
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={1,m2},集合B={3,9},则“m=3”是“A∩B={9}”的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

从[0,10]中任取一个数x,从[0,6]中任取一个数y,则使|x-5|+|y-3|≤4的概率为(  )
A、
1
2
B、
5
9
C、
2
3
D、
5
12

查看答案和解析>>

科目:高中数学 来源: 题型:

下面关于f(x)的判断:
①y=f(x-2)与y=f(2-x)的图象关于直线x=2对称;
②若f(x)为偶函数,且f(2+x)=-f(x),则f(x)的图象关于直线x=2对称.
③设函数f(x)=lnx,且x0,x1,x2∈(0,+∞),若x1<x2,则
1
x2
f(x1)-f(x2)
x1-x2

④函数f(x)=lnx,x0,x1,x2∈(0,+∞),存在x0∈(x1,x2),(x1<x2),使得
1
x0
=
f(x1)-f(x2)
x1-x2

⑤设函数f(x)=x2-3x+4,g(x)=
1
2
x2+4lnx+a
.对于?x1∈[1,e],总?x2∈[1,e],使得f(x1)=g(x2),则实数a的取值范围为[1,
5
4
]

其中正确的判断是
 
(把你认为正确的判断都填上)

查看答案和解析>>

同步练习册答案