精英家教网 > 高中数学 > 题目详情
3.$\frac{cos(-585°)}{tan495°+sin(-690°)}$的值是$\sqrt{2}$.

分析 直接利用诱导公式化简通过特殊角的三角函数求值即可.

解答 解:$\frac{cos(-585°)}{tan495°+sin(-690°)}$=$\frac{cos225°}{tan135°+sin30°}$=$\frac{-cos45°}{-tan45°+sin30°}$
=$\frac{-\frac{\sqrt{2}}{2}}{-1+\frac{1}{2}}=\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查诱导公式的应用,考查特殊角的三角函数值的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.方程$sin\frac{x}{2}-cos\frac{x}{2}=1$的解集为{x|$x=kπ+\frac{π}{4}$或$x=kπ+\frac{π}{2}$,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某五国领导人A,B,C,D,E参加国际会议,除E与B,E与D不单独会晤外,其他领导人两两之间都要单独会晤,现安排他们在两天的上午、下午单独会晤(每人每个半天最多进行一次会晤),那么安排他们单独会晤的不同方法共有(  )
A.48种B.36种C.24种D.8种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.用数学归纳法证明等式1+2+3+…+(2n+1)=(n+1)(2n+1)时,当n=1时左边表达式是,从k→k+1需要添的项是(2k+2)+(2k+3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若f(x)在R上可导,f(x)=x2+2f′(2)x+3,则f'(0)=-8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知sinθ+cosθ=$\frac{1}{5}$,θ∈(0,π),求tanθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.点A(a,1)在椭圆$\frac{x^2}{4}+\frac{y^2}{2}=1$的内部,则a的取值范围是(-$\sqrt{2}$,$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{lnx}{x}$,g(x)=$\frac{m}{{\sqrt{x}}}+f(x)({x>0,m∈R})$.
(1)设a=3xf(x)-7(x-1),b=-2lnx+6x-6,求证:对任意正数x,在a与b中至少有一个不大于0;
(2)讨论函数g(x)在区间$[{\frac{1}{4},{e^4}}]$上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,在△ABC中,已知∠BAC=$\frac{π}{3}$,|$\overrightarrow{AB}$|=2,|$\overrightarrow{AC}$|=3,点D为边BC上一点,满足$\overrightarrow{AC}$+2$\overrightarrow{AB}$=3$\overrightarrow{AD}$,点E是AD上一点,满足$\overrightarrow{AE}$=2$\overrightarrow{ED}$,则|$\overrightarrow{BE}$|=$\frac{2\sqrt{19}}{9}$.

查看答案和解析>>

同步练习册答案