精英家教网 > 高中数学 > 题目详情
11.用数学归纳法证明等式1+2+3+…+(2n+1)=(n+1)(2n+1)时,当n=1时左边表达式是,从k→k+1需要添的项是(2k+2)+(2k+3).

分析 由数学归纳法可知n=k时,左端为1+2+3+…+(2k+1),到n=k+1时,左端1+2+3+…+(2k+3),从而可得答案.

解答 解:∵用数学归纳法证明等式1+2+3+…+(2n+1)=(n+1)(2n+1)时,
当n=1左边所得的项是1+2+3;
假设n=k时,命题成立,左端为1+2+3+…+(2k+1);
则当n=k+1时,左端为1+2+3+…+(2k+1)+(2k+2)+[2(k+1)+1],
∴从“k→k+1”需增添的项是(2k+2)+(2k+3).
故答案为:(2k+2)+(2k+3).

点评 本题考查数学归纳法,着重考查理解与观察能力,考查推理证明的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知圆C与y轴相切,圆心C在直线l1:x-3y=0上,且截直线l2:x-y=0的弦长为2$\sqrt{7}$,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若复数z满足$\frac{\overline z}{1-i}={i^{2017}}$,其中i为虚数单位,则z=1-i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知x1>0,x1≠1且xn+1=$\frac{{{x_n}(x_n^2+3)}}{3x_n^2+1}$(n=1,2,…).试证:“在数列{xn}中,对任意正整数n都满足xn<xn+1”,当此题用反证法证明,否定结论时,应为(  )
A.对任意的正整数n,有xn=xn+1B.存在正整数n,使xn=xn+1
C.存在正整数n,使xn≥xn+1D.存在正整数n,使xn-xn-1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在各棱长为2的三棱柱ABC-A1B1C1中,侧面A1ACC1⊥底面ABC,∠A1AC=60°.
(1)求三棱柱ABC-A1B1C1的体积;
(2)已知点D是平面ABC内一点,且四边形ABCD为平行四边形,在直线AA1上是否存在点P,使DP∥平面AB1C?若存在,请确定点P的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,则$\overrightarrow{a}$与$\overrightarrow{a}$+$\overrightarrow{b}$的夹角为(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.$\frac{cos(-585°)}{tan495°+sin(-690°)}$的值是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2-ax(a≠0),g(x)=lnx,f(x)图象与x轴交于点M(M异于原点),f(x)在M处的切线为l1,g(x-1)图象与x轴交于点N且在该点处的切线为l2,并且l1与l2平行.
(Ⅰ)求f(2)的值;
(Ⅱ)已知实数t∈R,求函数y=f[xg(x)+t],x∈[1,e]的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知等差数列{an}的前n项和为Sn,首项为1的等比数列{bn}的公比为q,S2=a3=b3,且a1,a3,b4成等比数列.
(1)求{an}和{bn}的通项公式;
(2)设${c_n}=k+{a_n}+{log_3}{b_n}(k∈N_{\;}^+),若\frac{1}{c_1},\frac{1}{c_2},\frac{1}{c_t}$(t≥3)成等差数列,求k和t的值.

查看答案和解析>>

同步练习册答案