【题目】已知函数,其中为常数.
(1)讨论函数的单调性;
(2)若有两个相异零点,求证:.
【答案】(1)详见解析;(2)详见解析.
【解析】
(1)对f′(x)中的k分类讨论,根据f′(x)的正负判断函数的单调性即可.
(2)由题意得lnx1﹣kx1=0,lnx2﹣kx2=0,两式作差可得,lnx1﹣lnx2=k(x1﹣x2),k=,要证lnx1+lnx2>2即k(x1+x2)>2,将k代换后,化简变形得,设t1,构造函数g(t),利用新函数的导数求出单调区间,证得g(t)>g(1)=0即可.
(1),
①当时,,在区间上单调递增;
②当时,由,得,所以在区间上单调递增,在区间上单调递减.
(2)因为,是的两个零点,则,,
所以,.
要证,只要证,即证,
即证,即证,只要证.
设,则只要证.
设,则,所以在上单调递增.
所以,即,所以,即.
科目:高中数学 来源: 题型:
【题目】已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.
(1) 求抛物线的方程;
(2) 当点为直线上的定点时,求直线的方程;
(3) 当点在直线上移动时,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln(x2+1)﹣e﹣|x|(e为自然对数的底数),则不等式f(2x+1)>f(x)的解集是( )
A. (﹣1,1)B. (﹣∞,﹣1)∪(1,+∞)
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在同一直角坐标系中,经过伸缩变换后,曲线C的方程变为.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,直线/的极坐标方程为.
(1)求曲线C和直线l的直角坐标方程;
(2)过点作l的垂线l0交C于A,B两点,点A在x轴上方,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某花店每天以每枝元的价格从农场购进若干枝玫瑰花,然后以每枝元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进枝玫瑰花,求当天的利润(单位:元)关于当天需求量(单位:枝,)的函数解析式.
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
以100天记录的各需求量的频率作为各需求量发生的概率.
(i)若花店一天购进枝玫瑰花,表示当天的利润(单位:元),求的分布列,数学期望及方差;
(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2021年福建省高考实行“”模式.“”模式是指:“3”为全国统考科目语文、数学、外语,所有学生必考;“1”为首选科目,考生须在高中学业水平考试的物理、历史科目中选择1科;“2”为再选科目,考生可在化学、生物、政治、地理4个科目中选择2科,共计6个考试科目.
(1)若学生甲在“1”中选物理,在“2”中任选2科,求学生甲选化学和生物的概率;
(2)若学生乙在“1”中任选1科,在“2”中任选2科,求学生乙不选政治但选生物的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知的定义域为,,使得不等式成立,关于的不等式的解集记为.
(1)若为真,求实数的取值集合;
(2)在(1)的条件下,若是的充分不必要条件,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右顶点为,,椭圆上任意一点,满足,且椭圆过点.
(1)求椭圆的标准方程;
(2)设是轨迹上的两个动点,线段的中点在直线 (为参数)上,线段的中垂线与交于两点,是否存在点,使以为直径的圆经过点,若存在,求出点坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列有关命题的说法正确的是( )
A.命题“若⊥,则0”的否命题为“若⊥,则0”
B.命题“函数f(x)=(a﹣1)x是R上的增函数”的否定是“函数f(x)=(a﹣1)x是R上的减函数”
C.命题“在△ABC中,若sinA=sinB,则A=B”的逆否命题为真命题
D.命题“若x=2,则x2﹣3x+2=0”的逆命题为真命题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com