精英家教网 > 高中数学 > 题目详情

【题目】袋子里有完全相同的3只红球和4只黑球,今从袋子里随机取球.

)若有放回地取3次,每次取一个球,求取出2个红球1个黑球的概率;

)若无放回地取3次,每次取一个球,若取出每只红球得2分,取出每只黑球得1分,求得分的分布列和数学期望.

【答案】1108:343

2


3

4

5

6






【解析】试题分析:(1)由题可先算出取出红球和黑球的概率,再求取32个红球1个黑球的概率,可知为独立重复试验(有放回),运用独立重复试验的概率公式可求;(注意规范解题格式)

2)由题意(无放回),先分析出的可能取值,再分别求出对应的概率,可列出分布列(为超几何分布),代入期望公式可得。

试题解析:(1)从袋子里有放回地取3次球,相当于做了3次独立重复试验,每次试验取出红球的概率为,取出黑球的概率为,设事件取出2个红球1个黑球,则

2的取值有四个:3456,分布列为:

,


3

4

5

6






从而得分的数学期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形为矩形,均为等边三角形,

(1)过作截面与线段交于点,使得平面,试确定点的位置,并予以证明;

(2)在(1)的条件下,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心在直线l2xy0上,且与直线l1xy+10相切.

(Ⅰ)若圆C与圆x2+y22x4y760外切,试求圆C的半径;

(Ⅱ)满足已知条件的圆显然不只一个,但它们都与直线l1相切,我们称l1是这些圆的公切线.这些圆是否还有其他公切线?若有,求出公切线的方程,若没有,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型高端制造公司为响应《中国制造2025》中提出的坚持“创新驱动、质量为先、绿色发展、结构优化、人才为本”的基本方针,准备加大产品研发投资,下表是该公司2017年5~12月份研发费用(百万元)和产品销量(万台)的具体数据:

(1)根据数据可知之间存在线性相关关系

(i)求出关于的线性回归方程(系数精确到);

(ii)若2018年6月份研发投人为25百万元,根据所求的线性回归方程估计当月产品的销量;

(2)公司在2017年年终总结时准备从该年8~12月份这5个月中抽取3个月的数据进行重点分析,求没有抽到9月份数据的概率.

参考数据: .

参考公式:对于一组数据,,其回归直线的斜率和截距的最小二乘估计分别为: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=sinωxcosωx(ω>0)的部分图象如图所示.

(1)求ω的值;

(2)若x∈(-),求f(x)的值域;

(3)若方程3[f(x)]2f(x)+m=0在x∈(-)内有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集为R,函数fx)=lg1x)的定义域为集合A,集合B{x|x2x60}

(Ⅰ)求AB

(Ⅱ)若C{x|m1xm+1}CARB)),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着我国互联网信息技术的发展,网络购物已经成为许多人消费的一种重要方式,某市为了了解本市市民的网络购物情况,特委托一家网络公示进行了网络问卷调查,并从参与调查的10000名网民中随机抽取了200人进行抽样分析,得到了下表所示数据:

经常进行网络购物

偶尔或从不进行网络购物

合计

男性

50

50

100

女性

60

40

100

合计

110

90

200

(1)依据上述数据,能否在犯错误的概率不超过的前提下认为该市市民进行网络购物的情况与性别有关?

(2)现从所抽取的女性网民中利用分层抽样的方法再抽取人,从这人中随机选出人赠送网络优惠券,求出选出的人中至少有两人是经常进行网络购物的概率;

(3)将频率视为概率,从该市所有的参与调查的网民中随机抽取人赠送礼物,记经常进行网络购物的人数为,求的期望和方差.

附:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量与尺寸之间近似满足关系式为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间内时为优等品.现随机抽取6件合格产品,测得数据如下:

尺寸

38

48

58

68

78

88

质量

16.8

18.8

20.7

22.4

24

25.5

质量与尺寸的比

0.442

0.392

0.367

0.329

0.308

0.290

(I)现从抽取的6件合格产品中再任选3件,记为取到优等品的件数,试求随机变量的分布列和期望;

(II)根据测得数据作了初步处理,得相关统计量的值如下表:

75.3

24.6

18.3

101.4

(i)根据所给统计量,求关于的回归方程;

(ii)已知优等品的收益(单位:千元)与的关系为,则当优等品的尺寸为何值时,收益的预报值最大? (精确到0.1)

附:对于样本, 其回归直线的斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列和等比数列,其中的公差不为0.设是数列的前n项和.若是数列的前3项,且

1)求数列的通项公式;

2)若数列为等差数列,求实数t

3)构造数列,…,,…,,….若该数列前n项和,求n的值.

查看答案和解析>>

同步练习册答案