精英家教网 > 高中数学 > 题目详情
已知
a
=(3,tanx),
b
=(1,tany),其中0<y<x<
π
2
,若
a
b
,则x-y最大值为
 
考点:平面向量共线(平行)的坐标表示
专题:平面向量及应用
分析:利用向量共线定理可得tanx=3tany.再利用两角差的正切公式、基本不等式即可得出.
解答: 解:∵
a
b

∴tanx-3tany=0,即tanx=3tany.
tan(x-y)=
tanx-tany
1+tanxtany
=
2tany
1+3tan2y

∵0<y<x<
π
2

∴tany>0,0<x-y<
π
2

∴tan(x-y)=
2
1
tany
+3tany
2
2
3
=
3
3
,当且仅当
1
tany
=3tany
,即tany=
3
3
时取等号.
∴x-y的最大值为
π
6

故答案为:
π
6
点评:本题考查了向量共线定理、两角差的正切公式、基本不等式的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

比较4-2(
7
4
)
-
1
2
的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

二项式(x2-
2
x
)6
展开式的常数项是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某单位有200名职工,现用系统抽样法,从中抽取40名职工作样本,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为22,则第9组抽出的号码应是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,集合A={x|-1≤x-1≤2},B={x|x-a≥0,a∈R},若∁UA∩∁UB={x|x<0},∁UA∪∁UB={x|x<1或x>3},则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图(单位:cm)如图所示,则该几何体最长的一条侧棱长度是
 
cm.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x2+ax+bcosx,{x|f(x)=0,x∈R}={x|f(f(x))=0,x∈R}≠∅,则满足条件的所有实数a,b的值分别为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=sin(2x-
π
3
)的图象可以由y=sin2x的图象向右平移
π
6
个单位长度得到;
②函数y=3•2x的图象可以由函数y=2x的图象向左或向右平移得到;
③设函数f(x)=lg|x|-sinx的零点个数为n,则n=6;
④已知函数f(x)=m(x-2m)(x+m+3),g(x)=ex-e(e是自然对数的底数),如果对于任意x∈R总有f(x)<0或g(x)>0且存在x∈(-∞,-6),使得f(x)g(x)<0,则实数m的取值范围是(-4,-3).
则其中所有正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于数集X={-1,x1,x2,…,xn},其中0<x1<x2<…<xn,n≥2,定义向量的集合Y={
a
|
a
=(s,t),s∈X,t∈X},若对任意
a
1∈Y,存在
a
2∈Y,使得
a
l
a
2=0,则称X具有性质P.例如{-1,1,2}具有性质P.若X具有性质P,且x1=1,x2=q(q为常数),则有穷数列x1,x2,…,xn的通项公式为(  )
A、xi=qi-1,i=1,2,…,n
B、xi=1+(i-1)(q-1)i-1,i=1,2,…,n
C、xi=1+(i-1)q,i=1,2,…,n
D、xi=
q-2
2
i2+
4-q
2
i
,i=1,2,…n

查看答案和解析>>

同步练习册答案