分析 (1)将(1,-2)代入抛物线方程求得p,则抛物线方程可得,进而根据抛物线的性质求得其准线方程.
(2)先假设存在符合题意的直线,设出其方程,与抛物线方程联立,根据直线与抛物线方程有公共点,求得t的范围,利用直线AO与L的距离,求得t,则直线l的方程可得.
解答 解:(1)将(1,-2)代入抛物线方程y2=2px,
得4=2p,p=2
∴抛物线C的方程为:y2=4x,
其焦点坐标(1,0)
(2)假设存在符合题意的直线l,其方程为y=-2x+t,
由$\left\{\begin{array}{l}{y=-2x+t}\\{{y}^{2}=4x}\end{array}\right.$得y2+2y-2t=0,
∵直线l与抛物线有公共点,
∴△=4+8t≥0,解得t≥-$\frac{1}{2}$
又∵直线OA与L的距离d=$\frac{|t|}{\sqrt{5}}$=$\frac{\sqrt{5}}{5}$,求得t=±1
∵t≥-$\frac{1}{2}$
∴t=1
∴符合题意的直线l存在,方程为2x+y-1=0.
点评 本题小题主要考查了直线,抛物线等基础知识,考查推理论证能力,运算求解能力,考查函数与方程思想,数形结合的思想,化归与转化思想,分类讨论与整合思想.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1:4 | B. | 1:5 | C. | 1:7 | D. | 1:6 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com