精英家教网 > 高中数学 > 题目详情
已知命题p:任意x∈R,x2+1≥a,命题q:函数f(x)=x2-2ax+1在(-∞,-1]上单调递减.
(1)若命题p为真命题,求实数a的取值范围;
(2)若p和q均为真命题,求实数a的取值范围.
考点:命题的真假判断与应用
专题:函数的性质及应用,简易逻辑
分析:(1)对于命题p:任意x∈R,x2+1≥a,由x2≥0,即可得到实数a的取值范围;
(2)当q为真命题时,函数f(x)=x2-2ax+1=(x-a)2+1-a2在(-∞,-1]上单调递减.
利用二次函数的单调性可得a≥-1,由于p和q均为真命题,因此
a≤1
a≥-1
,解得即可.
解答: 解:(1)对于命题p:任意x∈R,x2+1≥a,∵x2≥0,∴a≤1,即实数a的取值范围是(-∞,1];
(2)当q为真命题时,函数f(x)=x2-2ax+1在(-∞,-1]上单调递减.
∴a≥-1,
∵p和q均为真命题,∴
a≤1
a≥-1
,解得-1≤a≤1,
∴实数a的取值范围是[-1,1].
点评:本题考查了二次函数的单调性、简易逻辑的有关知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个水平放置的平面图形的斜二测直观图是直角梯形(如图).∠ABC=45°,AB=AD=1,DC⊥BC,则这个平面图形的面积为(  )
A、
1
4
+
2
4
B、2+
2
2
C、
1
4
+
2
2
D、
1
2
+
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,角A,B,C的对边分别是a,b,c,满足
b-a
c
=
sinB-sinC
sinB+sinA
,关于x的不等式x2cosC+4xsinC+6≥0对任意的x∈R恒成立.
(1)求角A的值;
(2)求f(C)=2sinC•cosB的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

某商场为吸引顾客消费推出一项促销活动.活动规则如下:顾客消费额每满100元就可抽一次奖,例如:顾客消费额为299元可抽两次奖,所得奖金金额是两次两次抽奖获得的奖金金额的和.顾客每抽一次奖,得100元奖金的概率为
1
10
,得50元奖金的概率为
1
5
,得10元奖金的概率为
7
10

(1)如果顾客恰好消费了100元,并按规则参与抽奖活动,求该顾客得到的奖金金额不低于20元的概率;
(2)假设某位顾客消费额为230元,并按规则参与抽奖活动,所获得的奖金金额为X(元),求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲,乙,丙三人参加某次招聘会,假设甲能被聘用的概率是
2
5
,甲,丙两人同时不能被聘用的概率是
6
25
,乙,丙两人同时能被聘用的概率是
3
10
,且三人各自能否被聘用相互独立.
(1)求乙,丙两人各自能被聘用的概率;
(2)设ξ表示甲,乙,丙三人中能被聘用的人数与不能被聘用的人数之差的绝对值,求ξ的分布列与均值(数学期望).

查看答案和解析>>

科目:高中数学 来源: 题型:

经调查统计,某种型号的汽车在匀速行驶中,每小时的耗油量y(升)关于行驶速度x(千米/时)的函数可表示为y=
1
120000
x3-
1
50
x+
18
5
(0<x≤100).已知甲、乙两地相距100千米,在匀速行驶速度不超过100千米/时的条件下,该种型号的汽车从甲地到乙地的耗油量记为f(x)(升).
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)讨论函数f(x)的单调性,当x为多少时,耗油量f(x)为最少?最少为多少升?

查看答案和解析>>

科目:高中数学 来源: 题型:

在一段笔直的斜坡AC上竖立两根高16米的电杆AB,CD,过B,D架设一条10万伏高压电缆线.假设电缆线BD呈抛物线形状,现以B为原点,AB所在直线为Y轴建立如图所示的平面直角坐标系,经观测发现视线AD恰与电缆线相切于点D(m,n).
(1)求抛物线BD的方程;
(2)根据国家有关规定,高压电缆周围10米内为不安全区域,问当有一个身高1.8米的人在这段斜坡上走动时,这根高压电缆是否会对这个人的安全构成威胁?

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=f(x)的定义域为(-∞,-1)∪(1,+∞),其图象上任一点P(x,y)满足x2-y2=1,则给出以下四个命题:
①函数y=f(x)一定是偶函数;
②函数y=f(x)可能是奇函数;
③函数y=f(x)在(1,+∞)单调递增;
④若y=f(x)是偶函数,其值域为(0,+∞)
其中正确的序号为
 
.(把所有正确的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在平面直角坐标系xoy上的区域由不等式组
x+y-5≤0
y≥x
x≥1
确定,若M(x,y)为区域D上的动点,点A的坐标为(2,3),则z=
OA
OM
的最大值为
 

查看答案和解析>>

同步练习册答案