精英家教网 > 高中数学 > 题目详情
4.若$\frac{sinαcosα}{cos2α+1}=1,tan({α-β})=3$,则tanβ=(  )
A.-1B.$\frac{1}{7}$C.$-\frac{1}{7}$D.1

分析 由已知利用二倍角的余弦函数公式,同角三角函数基本关系式可求tanα=2,进而利用两角差的正切函数公式即可化简已知等式得解.

解答 解:∵$\frac{sinαcosα}{cos2α+1}=1$,可得:$\frac{sinαcosα}{2co{s}^{2}α}$=1,可得:$\frac{tanα}{2}=1$,即:tanα=2,
∴由tan(α-β)=3=$\frac{tanα-tanβ}{1+tanαtanβ}$=$\frac{2-tanβ}{1+2tanβ}$,
解得:tan$β=-\frac{1}{7}$,
故选:C.

点评 本题主要考查了二倍角的余弦函数公式,同角三角函数基本关系式,两角差的正切函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知奇函数f(x)满足f(x-2)=f(x),当0<x<l时,f(x)=2x,则f(log29)的值为(  )
A.9B.-$\frac{1}{9}$C.-$\frac{16}{9}$D.$\frac{16}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,正方形ADMN与矩形ABCD所在的平面相互垂直,AB=2AD=6,点E为线段AB上一点.

(1)若点E是AB的中点,求证:BM∥平面NDE;
(2)若二面角D-CE-M的大小为$\frac{π}{6}$,求出AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知非零向量$\overrightarrow a,\overrightarrow b$满足$({\overrightarrow b-2\overrightarrow a})⊥\overrightarrow b$,且$\overrightarrow a⊥(\overrightarrow a-2\overrightarrow b)$,则$\overrightarrow a$与$\overrightarrow b$的夹角是(  )
A.$\frac{π}{3}$B.$\frac{π}{2}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知向量$\overrightarrow a=({-1,2}),\overrightarrow b=({1,x})$,若$\overrightarrow a⊥({\overrightarrow a+2\overrightarrow b})$,则实数x的值为-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若将函数y=2cos2x的图象向右平移$\frac{π}{12}$个单位长度,则平移后函数的一个零点是(  )
A.($\frac{5}{6}$π,0)B.($\frac{7π}{6}$,0)C.(-$\frac{π}{3}$,0)D.($\frac{π}{6}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.直线x+y-1=0的倾斜角等于(  )
A.45°B.60°C.120°D.135°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=xlnx(e为无理数,e≈2.718)
(1)求函数f(x)在点(e,f(e))处的切线方程;
(2)设实数$a>\frac{1}{2e}$,求函数f(x)在[a,2a]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.M公司从某大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩如茎叶图所示(单位:分),公司规定:成绩在180分以上者到“甲部门”工作;180分以下者到“乙部门”工作.
(1)求男生成绩的中位数及女生成绩的平均值;
(2)如果用分层抽样的方法从“甲部门”人选和“乙部门”人选中共选取5人,再从这5人中选2人,那么至少有一人是“甲部门”人选的概率是多少?

查看答案和解析>>

同步练习册答案