精英家教网 > 高中数学 > 题目详情
3.若△ABC的内角A,B,C的对边分别为a,b,c,已知2bsin2A=asinB,且c=2b,则$\frac{a}{b}$=(  )
A.2B.3C.$\sqrt{2}$D.$\sqrt{3}$

分析 利用正弦定理化简已知等式,结合sinA≠0,sinB≠0,可得cosA=$\frac{1}{4}$,又c=2b,利用余弦定理即可计算得解$\frac{a}{b}$的值

解答 解:由2bsin2A=asinB,利用正弦定理可得:4sinBsinAcosA=sinAsinB,
由于:sinA≠0,sinB≠0,
可得:cosA=$\frac{1}{4}$,
又c=2b,
可得:a2=b2+c2-2bccosA=b2+4b2-2b•2b•$\frac{1}{4}$=4b2
则$\frac{a}{b}$=2.
故选:A.

点评 本题主要考查了正弦定理,余弦定理在解三角形中的综合应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=sin(2x+φ),其中|φ|<π,若f(x)≤|f($\frac{π}{6}$)|对x∈R恒成立,且f($\frac{π}{2}$)>f(π),则f(x)的递增区间是(  )
A.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)B.[kπ,kπ+$\frac{π}{2}$](k∈Z)C.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$]((k∈Z)D.[kπ-$\frac{π}{2}$,kπ]((k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)已知角α终边经过点P(-3,-4),求sinα,cosα,tanα的值?
(2)已知角α是第二象限角,且$sinα=\frac{3}{5}$,求cosα,tanα的值?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知抛物线C:y2=2px(p>0),焦点为F,过点G(p,0)任作直线l交抛物线C于A,M两点,设A(x1,y1),M(x2,y2).
(1)证明:y1y2为常数,并求当y1y2=-8时抛物线C的方程;
(2)若直线AF与x轴不垂直,直线AF交抛物线C于另一点B,直线BG交抛物线C于另一点N.求证:直线AB与直线MN斜率之比为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设不等式|2x-1|<1的解集为M,且a∈M,b∈M.
(1)试比较ab+1与a+b的大小.
(2)设max{A}表示数集A中的最大数,且$h=max\{\frac{2}{{\sqrt{a}}},\frac{a+b}{{\sqrt{ab}}},\frac{ab+1}{{\sqrt{b}}}\}$,求证:h>2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个扇形的圆心角为$\frac{2π}{3}$,半径为$\sqrt{3}$,则此扇形的面积为(  )
A.πB.$\frac{5π}{4}$C.$\frac{{\sqrt{3}π}}{3}$D.$\frac{{2\sqrt{3}}}{9}{π^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若?x>0,4a>x2-x3恒成立,则a的取值范围为(  )
A.$({\frac{1}{27},+∞})$B.$({\frac{4}{27},+∞})$C.$[{\frac{1}{27},+∞})$D.$[{\frac{4}{27},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.2016年春运期间为查醉酒驾驶,将甲、乙、丙三名交警安排到某商业中心附近的两个不同路口突击检查,每个路口至少一人,则甲、乙两名交警不在同一路口的概率是(  )
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=2x3+3ax2+3bx+c在x=1及x=2时取得极值.
(1)求a,b的值;
(2)若f(x)在[-1,2]上的最大值是9,求f(x)在[-1,2]上的最小值.

查看答案和解析>>

同步练习册答案