精英家教网 > 高中数学 > 题目详情
4.函数f(x)=$\left\{\begin{array}{l}{lnx-{x}^{2}+2x(x>0)}\\{{x}^{2}-2x-3(x≥0)}\end{array}\right.$的零点个数为(  )
A.0B.1C.2D.3

分析 分段函数的零点要讨论,对第一部分要作图.

解答 解:①x≤0时,
f(x)=x2-2x-3=(x-1)2-4=0
解得,x=-1或x=3(舍去).
②x>0时,由y=lnx与y=x2-2x的图象可知,其有(0,+∞)上有两个交点,
故有两个解;
则函数f(x)=$\left\{\begin{array}{l}{lnx-{x}^{2}+2x(x>0)}\\{{x}^{2}-2x-3(x≥0)}\end{array}\right.$的零点个数为3.
故选:D.

点评 本题考查了分段函数的零点个数,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow{a}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$)和$\overrightarrow{b}$=(-$\sqrt{3}$,1),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.己知函数f(x)=g(x-1),其中g(x)=x-aex
(Ⅰ)求函数f(x)的单凋区间;
(Ⅱ)若f(x)≤-1对x∈R恒成立,求实数a的取值范围;
(Ⅲ)对任意n的个正整数a1,a2,…an,记A=$\frac{{a}_{1}+{a}_{2}+…{a}_{n}}{n}$
(1)求证:$\frac{{a}_{i}}{A}$≤${e}^{\frac{{a}_{i}}{A}-1}$(i=1,2,n)
(2)求证:A≥$\root{n}{{a}_{1}{a}_{2}…{a}_{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设计一个伸缩变换,把椭圆$\frac{{x}^{2}}{1}$+$\frac{{y}^{2}}{16}$=1变成单位圆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,E为BC边中点.
(1)求证:BD1∥平面C1DE;
(2)求三棱锥D1-DBC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若等差数列{an}满足a2+an-1=2n,则其前n项和Sn=n2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合M={x|2a-2<x<a+1},N={x|1≤x≤2},且M⊆CRN,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.判断下列函数的奇偶性:
(1)f(x)=$\frac{1}{x}$;
(2)f(x)=-3x2+1;
(3)f(x)=$\left\{\begin{array}{l}{{x}^{2}+x,x<0}\\{x-{x}^{2},x>0}\end{array}\right.$;
(4)f(x)=0;
(5)f(x)=2x+1;
(6)f(x)=$\frac{{x}^{3}-{x}^{2}}{x-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=6-2x的值域为[-4,10),求f(x)的定义域.

查看答案和解析>>

同步练习册答案