精英家教网 > 高中数学 > 题目详情
8.曲线y=$\frac{sinx}{sinx+cosx}$在点M($\frac{π}{4}$,$\frac{1}{2}$)处的切线斜率为$\frac{1}{2}$.

分析 利用导数的运算法则、几何意义即可得出.

解答 解:y′=$\frac{cosx(sinx+cosx)-sinx(cosx-sinx)}{(sinx+cosx)^{2}}$=$\frac{1}{1+sin2x}$,
当x=$\frac{π}{4}$时,y′=$\frac{1}{1+sin\frac{π}{2}}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查了导数的运算法则、几何意义,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.一个结晶体的形状为平行六面体ABCD-A1B1C1D1,以顶点A为端点的三条棱长都相等,且它们彼此的夹角都是60°,则$\frac{A{C}_{1}}{AB}$=(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知关于x的不等式ax2+bx+c≥0的解集为{x|-$\frac{1}{3}$≤x≤2},试求不等式cx2+bx+a<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若($\frac{1}{x}$-x2n的常数项是15,则展开式中x3的系数为-20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x+1+a•ex(a∈R,e为自然对数的底数).
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(Ⅱ)求函数f(x)的极值;
(Ⅲ)当a=1时,若直线l:y=kx+1与曲线y=f(x)没有公共点,求k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C1:$\frac{{x}^{2}}{4}$+y2=1,椭圆C2以椭圆C1的长轴为短轴,且离心率e=$\frac{\sqrt{5}}{5}$.
(1)求椭圆C2的方程; 
(2)如图,点A,B分别为椭圆C1的上、下顶点,点P为椭圆C2上一动点,∠APB的大小为θ,求cosθ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x2-ax的图象在点A(1,f(1))处的切线l与直线x+3y+2=0垂直,若数列{$\frac{1}{f(n)}$}的前n项和为Sn,则S2014的值为(  )
A.$\frac{2015}{2016}$B.$\frac{2014}{2015}$C.$\frac{2013}{2014}$D.$\frac{2012}{2013}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.曲线y=cosx在x=$\frac{π}{6}$处切线的斜率为(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,三棱柱ABC-A1B1C1中平面ABC⊥平面AA1B1B,CA=CB=AB=AA1=2,∠BAA1=60°,
(1)证明:AB⊥A1C;
(2)直线A1C与平面BB1A1A所成角的正弦值;
(3)求直线A1C与平面BB1C1C所成角正弦值.

查看答案和解析>>

同步练习册答案