精英家教网 > 高中数学 > 题目详情
14.函数f(x)=x2+x+sinx+cosx+c的图象不过坐标原点,且当x∈[-π,π]时,f(x)的图象不存在关于坐标原点对称的两点,则c可取到的最大负整数是-9.

分析 假设f(x)图象上存在两点关于原点对称,设其中一个点横坐标为x,则f(x)+f(-x)=0,x∈(0,π],得出c关于x的函数,求出函数c(x)的值域即c的范围M,则符合条件的c为集合M的补集,得出答案.

解答 解:∵f(x)的图象不过坐标原点,
∴f(0)≠0,即1+c≠0,∴c≠-1.
假设f(x)的图象存在关于坐标原点对称的两点,设两点坐标为(x,f(x)),(-x,-f(x)).x∈(0,π]
则f(x)+f(-x)=0,
∴2x2+2cosx+2c=0,
∴c=-x2-cosx,
∴c′(x)=-2x+sinx<0.
∴c(x)在(0,π]上单调递减,
∴1-π2≤c<-1,
∵f(x)的图象不存在关于坐标原点对称的两点,∴c≥-1或c<1-π2≈-8.87.
又∵c≠-1,
∴c可取到的最大负整数为-9.
故答案为:-9.

点评 本题考查了函数的单调性,函数的值域,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知直线l与直线2x-y+4=0关于x=1对称,则直线l的方程是(  )
A.2x+y-8=0B.3x-2y+1=0C.x+2y-5=0D.3x+2y-7=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求$\underset{\underbrace{4+\frac{1}{4+\frac{1}{4+\frac{1}{4+…}}}}}{共10个4}$,画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将4个球随机放入3个空盒,则所有球都在两个盒中,但不是全在一个盒子里的概率为(  )
A.$\frac{7}{27}$B.$\frac{2}{3}$C.$\frac{14}{27}$D.$\frac{14}{81}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在平面四边形ABCD中,AB⊥AD,AB=1,AC=$\sqrt{7}$,∠ABC=$\frac{2π}{3}$,∠ACD=$\frac{π}{3}$.
(Ⅰ)求sin∠BAC;
(Ⅱ)求DC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在三棱锥A-BCD中,CA=CD,BA=BD,点E是边AD上的一点,当AD=2AE时,AD⊥平面BCE.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若函数f(x)=ax3+3x2+(a-2)x-1在区间(-∞,+∞)上是减函数,则实数a的取值范围是(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(α>b>0)的右焦点到直线x-y+3$\sqrt{2}$=0的距离为5,且椭圆的一个长轴端点与一个短轴端点间的距离为$\sqrt{10}$.
(1)求椭圆C的方程;
(2)在x轴上是否存在点Q,使得过Q的直线与椭圆C交于A、B两点,且满足$\frac{1}{Q{A}^{2}}$+$\frac{1}{Q{B}^{2}}$为定值?若存在,请求出定值,并求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中满足$f(\frac{{{x_1}+{x_2}}}{2})<\frac{{f({x_1})+f({x_2})}}{2}({x_1}≠{x_2})$的是(  )
A.f(x)=3x+2B.$f(x)=\sqrt{x}$C.$f(x)=-{(\frac{1}{2})^x}$D.f(x)=x2+x+1

查看答案和解析>>

同步练习册答案