精英家教网 > 高中数学 > 题目详情
12.等腰△OAB中,∠A=∠B=30°,E、F分别是直线OA、OB上的动点,$\overrightarrow{OA}$、$\overrightarrow{OB}$上的动点,$\overrightarrow{OE}$=λ$\overrightarrow{OA}$,$\overrightarrow{OF}$=μ$\overrightarrow{OB}$,|$\overrightarrow{OA}$|=2,若$\overrightarrow{AE}$•$\overrightarrow{AB}$=9,则λ=-$\frac{1}{2}$;若λ+2μ=2,则$\overrightarrow{AF}$•$\overrightarrow{BE}$的最小值是-10.

分析 (1)根据等腰三角形的性质解出AB,代入数量积公式求出AE,从而得出λ的值.
(2)用$\overrightarrow{OA},\overrightarrow{OB}$表示出$\overrightarrow{AF},\overrightarrow{BE}$,用μ表示出λ,计算出数量积得到关于μ得函数,求出此函数的最小值即可.

解答 解:(1)过O作OC⊥AB,则C是AB的中点,∵OA=2,∠OAB=30°,∴AC=$\sqrt{3}$,AB=2AC=2$\sqrt{3}$.
∵$\overrightarrow{AE}$•$\overrightarrow{AB}$=AE•AB•cos30°=9,∴AE=3,∴$\overrightarrow{OE}$=-$\frac{1}{2}$$\overrightarrow{OA}$,∴λ=-$\frac{1}{2}$.
(2)∵λ+2μ=2,∴λ=2-2μ.$\overrightarrow{OA}•\overrightarrow{OB}$=OA×OA×cos120°=-2.
∵$\overrightarrow{AF}$=$\overrightarrow{AO}+\overrightarrow{OF}$=-$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,$\overrightarrow{BE}$=$\overrightarrow{BO}+\overrightarrow{OE}$=-$\overrightarrow{OB}$+(2-2μ)$\overrightarrow{OA}$.
∴$\overrightarrow{AF}$•$\overrightarrow{BE}$=(-$\overrightarrow{OA}$+μ$\overrightarrow{OB}$)•(-$\overrightarrow{OB}$+(2-2μ)$\overrightarrow{OA}$)=(2μ-2)${\overrightarrow{OA}}^{2}$-μ${\overrightarrow{OB}}^{2}$+$\overrightarrow{OA}•\overrightarrow{OB}$+μ(2-2μ)$\overrightarrow{OA}•\overrightarrow{OB}$
=4(2μ-2)-4μ-2-2μ(2-2μ)=4μ2-10.
∴当μ=0时,$\overrightarrow{AF}$•$\overrightarrow{BE}$取得最小值-10.
故答案为-$\frac{1}{2}$,-10.

点评 本题考查了平面向量的数量积运算,平面向量的线性运算,函数的最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.下列各式的大小关系正确的是(  )
A.sin11°>sin168°B.sin194°<cos160°
C.cos(-$\frac{15π}{8}$)>cos$\frac{14π}{9}$D.tan(-$\frac{π}{5}$)<tan(-$\frac{3π}{7}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设三次方程式x3-17x2+32x-30=0有两个复数根a+i,1+bi,其中a,b是不为0的实数,试求另一实根是15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知α、β是两个平面,m、n是两条直线,则下列命题不正确的是(  )
A.若m∥n,m⊥α,则n⊥αB.若m⊥α,m⊥β,则α∥β
C.若m⊥α,m?β,则α⊥βD.若m⊥α,α∩β=n,则m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知m,n,l是直线,α,β是平面,下列命题中:
①若m?α,l?β,且α∥β,则m∥l;
②若l平行于α,则α内可有无数条直线与l平行;
③若m?α,l?β,且l⊥m,则α⊥β;
④若m⊥n,n⊥l,则m∥l;
所有正确的命题序号为②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.利用定积分的定义计算${∫}_{2}^{3}$(x+2)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,有$\frac{f(a)+f(b)}{a+b}$>0成立.
(Ⅰ)判断f(x)在[-1,1]上的单调性,并证明;
(Ⅱ)解不等式:f(2x-1)<f(1-3x);
(Ⅲ)若f(x)≤m2-2am+1对所有的a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.计算:$\sqrt{{{({3-π})}^2}}+ln{e^2}$=π-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a是第二象限角,则$\frac{a}{2}$与$\frac{π}{2}$-α都不是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

同步练习册答案