精英家教网 > 高中数学 > 题目详情
12.甲口袋中装有10个红球,8个白球,乙口袋中装有12个红球,6个白球,现分别从甲、乙口袋中各任意取出1个小球.求:(1)取得两个球都是红球,有多少种取法?
(2)取得两个球中恰有一个是红球,有多少种取法?
(3)取得两个球中至少有一个是红球,有多少种取法?

分析 (1)直接由分步计数原理可得,
(2)分两类,甲红乙百,和甲百乙红,由分类计数原理可得,
(3)取得两个球中至少有一个是红球,包含取得两个球都是红球和取得两个球中恰有一个是红球,
由(1),(2)可得.

解答 解:(1)取得两个球都是红球,有C101C121=120种,
(2)取得两个球中恰有一个是红球,C101C61+C81C121=60+96=156种,
(3)取得两个球中至少有一个是红球,包含取得两个球都是红球和取得两个球中恰有一个是红球,
由(1),(2)可知,共有120+156=276种.

点评 本题考查了分步和分类计数原理,关键分清是分类还是分步,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在如图所示的空间几何体中,平面ACD⊥平面ABC,△ACD与△ACB是边长为2的等边三角形,BE=2,BE和平面ABC所成角为60°,且点E在平面ABC上射影落在∠ABC的平分线上.
(1)求证:DE∥平面ABC
(2)求此空间几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱锥P-ABCD中,△PAD为正三角形,四边形ABCD是边长为2的菱形,
∠BAD=60°平面ABE与直线PA,PD分别交于点E,F.
(Ⅰ)求证:AB∥EF;
(Ⅱ)若平面PAD⊥平面ABCD,试求三棱锥A-PBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C所对的边分别为a,b,c,且asinB+$\sqrt{3}$acosB=$\sqrt{3}$c.
(Ⅰ)求角A的大小;
(Ⅱ)函数f(x)=5cos2(ωx+$\frac{A}{2}$)-3(ω>0),将y=f(x)图象的纵坐标不变,横坐标伸长到原来的$\frac{3}{2}$
倍后便得到函数y=g(x)的图象,若函数y=g(x)的最小正周期为π.当x∈[0,$\frac{π}{3}$]时,求函数f(x)值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1({a>b>0}),F1,F2是左右焦点,A,B是长轴两端点,点P(a,b)与F1,F2围成等腰三角形,且${S_{△P{F_1}{F_2}}}$=$\sqrt{3}$.
(I)求椭圆C的方程;
(Ⅱ)设点Q是椭圆上异于A,B的动点,直线x=-4与QA,QB分别交于M,N两点.
(i)当$\overrightarrow{Q{F_1}}$=λ$\overrightarrow{MN}$时,求Q点坐标;
(ii)过点M,N,F1三点的圆是否经过x轴上不同于点F1的定点?若经过,求出定点坐标,若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足$\overrightarrow{c}$=$\overrightarrow{a}$+m$\overrightarrow{b}$(m为实数),$\overrightarrow{a}$⊥$\overrightarrow{c}$,$\overrightarrow{b}$•$\overrightarrow{c}$=-2,|$\overrightarrow{c}$|=2,则实数m=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知f(x)、g(x)分别是定义在R上的奇函数和偶函数,若f(x)+g(x)=3x,则下列结论正确的是(  )
A.f(1)=$\frac{8}{3}$B.g(1)=$\frac{10}{3}$C.若a>b,则f(a)>f(b)D.若a>b,则g(a)>g(b)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设直线y=$\frac{1}{2}$x+b是曲线y=lnx的一条切线,则b的值为(  )
A.ln2-1B.ln2-2C.2ln2-1D.2ln2-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.{an}满足an+1=an+an-1(n∈N*,n≥2),Sn是{an}前n项和,a5=1,则S6=4.

查看答案和解析>>

同步练习册答案