精英家教网 > 高中数学 > 题目详情
若对一切x∈R,mx2+2mx-3<0恒成立,则实数m的取值范围为(  )
A、(-3,0)
B、(-3,0]
C、(-∞,-3]
D、(-∞,0]
考点:函数恒成立问题
专题:计算题,函数的性质及应用
分析:依题意知,
m=2m=0
-3<0
①或
m<0
=4m2-4m×(-3)<0
②,分别解之即可得到实数m的取值范围.
解答: 解:∵对一切x∈R,mx2+2mx-3<0恒成立,
m=2m=0
-3<0
①或
m<0
=4m2-4m×(-3)<0
②,
解①得:m=0;
解②得:-3<m<0;
综合①②得,-3<m≤0.
∴实数m的取值范围为(-3,0].
故选:B.
点评:本题考查函数恒成立问题,考查等价转化思想、分类讨论思想、方程思想与运算求解能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法中,正确的有
 

①若点P(x0,y0)是抛物线y2=2px上一点,则该点到抛物线的焦点F的距离是|PF|=x0+
P
2

②方程x2+y2-2x+1=0表示的图形是圆;
③设定圆O上有一动点A,圆O内一定点M,AM的垂直平分线与半径OA的交点为点P,则P的轨迹为一椭圆;
④某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=13;
⑤双曲线
y2
49
-
x2
25
=-1的渐近线方程是y=±
5
7
x.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=|
b
|=|
a
-2
b
|=1,则|2
a
+
b
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a∈R,若对任意的n∈N*时,不等式(an-20)ln(
n
a
)≥0
恒成立,则a的取值范围是(  )
A、(-∞,5]
B、[4,5]
C、(4,5)
D、[1,5]

查看答案和解析>>

科目:高中数学 来源: 题型:

记max{a,b}为a和b两数中的较大数.设函数f(x)和g(x)的定义域都是R,则“f(x)和g(x)都是偶函数”是“函数F(x)=max{f(x),g(x)}为偶函数”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线x2-
y2
3
=1
的左右两支上各有一点A,B,点B在直线x=
1
2
上的射影是点B′,若直线AB过右焦点,则直线AB′必过点(  )
A、(1,0)
B、(
5
4
,0
C、(
3
2
,0
D、(
7
4
,0

查看答案和解析>>

科目:高中数学 来源: 题型:

球面上有三点A、B、C组成这个球的一个截面的内接三角形三个顶点,其中AB=18,BC=24,AC=30,球心到这个截面的距离为球半径的一半,则球的表面积为(  )
A、1200π
B、1400π
C、1600π
D、1800π

查看答案和解析>>

科目:高中数学 来源: 题型:

中心在原点,焦点在x轴上的双曲线C的离心率为2,直线l与双曲线C交于A、B两点,线段AB中点M在第一象限,并且在抛物线y2=2px(p>0)上,且M到抛物线焦点的距离为p,则直线l的斜率为(  )
A、1
B、2
C、
3
2
D、
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1
(a>b>0)与抛物线C2:y2=4mx(m>0)有公共焦点F2(1,0),且3a2=4b2
(1)求椭圆和抛物线的方程;
(2)设直线l经过椭圆的左焦点F1,与抛物线交于不同两点P,Q,且满足
F1P
F1Q
,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案