精英家教网 > 高中数学 > 题目详情
中心在原点,焦点在x轴上的双曲线C的离心率为2,直线l与双曲线C交于A、B两点,线段AB中点M在第一象限,并且在抛物线y2=2px(p>0)上,且M到抛物线焦点的距离为p,则直线l的斜率为(  )
A、1
B、2
C、
3
2
D、
5
2
考点:抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:利用抛物线的定义,确定M的坐标,利用点差法将线段AB中点M的坐标代入,即可求得结论.
解答: 解:∵M在抛物线y2=2px(p>0)上,且M到抛物线焦点的距离为p,
∴M的横坐标为
p
2
,∴M(
p
2
,p)
设双曲线方程为
x2
a2
-
y2
b2
=1
(a>0,b>0),A(x1,y1),B(x2,y2),则
x12
a2
-
y12
b2
=1
x22
a2
-
y22
b2
=1

两式相减,并将线段AB中点M的坐标代入,可得
p(x1-x2)
a2
-
2p(y1-y2)
b2
=0,
y1-y2
x1-x2
=
b2
2a2
=
c2-a2
2a2
=
e2-1
2
=
3
2

故选C.
点评:本题考查双曲线与抛物线的综合,考查点差法的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P是抛物线y2=4x上的点,设点P到抛物线的准线的距离为d1,到圆(x+3)2+(y-3)2=1上的动点Q距离为d2,则d1+d2的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若对一切x∈R,mx2+2mx-3<0恒成立,则实数m的取值范围为(  )
A、(-3,0)
B、(-3,0]
C、(-∞,-3]
D、(-∞,0]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=mx3+3(m-1)x2-m2+1(m>0)的单调递减区间是(0,4),则m=(  )
A、3
B、
1
3
C、2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b∈R,且ab>0,则下列不等式中不正确的是(  )
A、
b
a
+
a
b
≥2
B、2
ab
≤|a+b|
C、|a+b|≥|a-b|
D、|a+b|<|a|+|b|

查看答案和解析>>

科目:高中数学 来源: 题型:

向量
a
=(3,-4),向量|
b
|=2,若
a
b
=-5,那么向量
a
b
的夹角为(  )
A、
π
3
B、
π
6
C、
3
D、
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}的公比为正数,且a2a2n+2=2(an+1)2(n∈N*),a2=2,则a1=(  )
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一容量为100的样本的重量的频率分布直方图,样本重量均在[5,20]内,其分组为[5,10),[10,15),[15,20],则样本重量落在[15,20]内的频数为(  )
A、10B、20C、30D、40

查看答案和解析>>

科目:高中数学 来源: 题型:

(用分析法或者综合法证明)已知a>6,求证:
a-3
-
a-4
a-5
-
a-6

查看答案和解析>>

同步练习册答案