精英家教网 > 高中数学 > 题目详情
如图是一容量为100的样本的重量的频率分布直方图,样本重量均在[5,20]内,其分组为[5,10),[10,15),[15,20],则样本重量落在[15,20]内的频数为(  )
A、10B、20C、30D、40
考点:频率分布直方图
专题:图表型,概率与统计
分析:频率分布直方图中各个小矩形的面积和为1,故先求出其它组的小矩形的面积,用1减去这些小矩形面积的和,求出[15,20]内的面积,即得出这一组的频率,用频率与样本容量100相乘得到这一组的频数.
解答: 解:第一个小矩形的面积为0.06×5=0.3,第二个小矩形的面积为0.1×5=0.5,
故[15,20]对应的小矩形的面积为1-0.3-0.5=0.2
样本落在[15,20]内的频率为0.2,
样本落在[15,20]内的频数为0.2×100=20,
故选B.
点评:本题考查对频率分布直方图的认识与了解,属于用图表告诉已知条件的题,此类题在高考中多有出现.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a∈R,若对任意的n∈N*时,不等式(an-20)ln(
n
a
)≥0
恒成立,则a的取值范围是(  )
A、(-∞,5]
B、[4,5]
C、(4,5)
D、[1,5]

查看答案和解析>>

科目:高中数学 来源: 题型:

中心在原点,焦点在x轴上的双曲线C的离心率为2,直线l与双曲线C交于A、B两点,线段AB中点M在第一象限,并且在抛物线y2=2px(p>0)上,且M到抛物线焦点的距离为p,则直线l的斜率为(  )
A、1
B、2
C、
3
2
D、
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x的准线过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦点且与双曲线交于A、B两点,O为坐标原点,且△AOB的面积为
3
2
,则双曲线的离心率为(  )
A、
3
2
B、4
C、3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C,D,E为抛物线y=
1
4
x2上不同的五点,抛物线焦点为F,满足
FA
+
FB
+
FC
+
FD
+
FE
=0,则|
FA
|+|
FB
|+|
FC
|+|
FD
|+|
FE
|=(  )
A、5
B、10
C、
5
16
D、
85
16

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:
x=-3+2sinθ
y=2cosθ
(θ为参数),与x轴交与A、B两点,则|AB|等于(  )
A、6B、4C、2D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1
(a>b>0)与抛物线C2:y2=4mx(m>0)有公共焦点F2(1,0),且3a2=4b2
(1)求椭圆和抛物线的方程;
(2)设直线l经过椭圆的左焦点F1,与抛物线交于不同两点P,Q,且满足
F1P
F1Q
,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2|x-1|-|x+2|.
(1)求f(x)≤6的解集.
(2)若f(x)≥m对任意x∈R恒成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x+1
2x-1

(1)求f(x)的定义域;
(2)判断f(x)的奇偶性.

查看答案和解析>>

同步练习册答案