精英家教网 > 高中数学 > 题目详情
向量
a
=(3,-4),向量|
b
|=2,若
a
b
=-5,那么向量
a
b
的夹角为(  )
A、
π
3
B、
π
6
C、
3
D、
4
考点:平面向量数量积的坐标表示、模、夹角
专题:平面向量及应用
分析:根据题意,求出向量
a
b
夹角的余弦值,即得夹角的大小.
解答: 解:∵向量
a
=(3,-4),向量|
b
|=2,且
a
b
=-5,
∴cos<
a
b
>=
a
b
|
a
||
b
|
=
-5
5×2
=-
1
2

又两向量的夹角范围是[0,π],
a
b
的夹角为
3

故选:C.
点评:本题考查了平面向量的数量积以及模与夹角的问题,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系xOy中,曲线C的参数方程为
x=
t
y=2t
(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立极坐标系.直线l的极坐标方程为ρcosθ-ρsinθ+1=0.则l与C的交点直角坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线x2-
y2
3
=1
的左右两支上各有一点A,B,点B在直线x=
1
2
上的射影是点B′,若直线AB过右焦点,则直线AB′必过点(  )
A、(1,0)
B、(
5
4
,0
C、(
3
2
,0
D、(
7
4
,0

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的增函数,且对于任意的x都有f(2-x)+f(2+x)=0恒成立.如果实数m,n满足不等式
n≥4
f(m2-6m+25)+f(n2-8n)≤0
,那么m2+n2+2m-2n的取值范围是(  )
A、[11,47]
B、[11,39]
C、[7,47]
D、[7,11]

查看答案和解析>>

科目:高中数学 来源: 题型:

中心在原点,焦点在x轴上的双曲线C的离心率为2,直线l与双曲线C交于A、B两点,线段AB中点M在第一象限,并且在抛物线y2=2px(p>0)上,且M到抛物线焦点的距离为p,则直线l的斜率为(  )
A、1
B、2
C、
3
2
D、
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F(-c,0)(c>0)是双曲线
x2
a2
-
y2
b2
=1
的左焦点,离心率为e,过F且平行于双曲线渐近线的直线与圆x2+y2=c2交于点P,且点P在抛物线y2=4cx上,则e2=(  )
A、
3+
5
2
B、
5
C、
5
-1
2
D、
1+
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x的准线过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦点且与双曲线交于A、B两点,O为坐标原点,且△AOB的面积为
3
2
,则双曲线的离心率为(  )
A、
3
2
B、4
C、3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:
x=-3+2sinθ
y=2cosθ
(θ为参数),与x轴交与A、B两点,则|AB|等于(  )
A、6B、4C、2D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科学生做)若函数f(x)对任意x1,x2∈D,都有|f(x1)-f(x2)|≤|x1-x2|成立,则称f(x)为D上的“收缩”函数
(1)判断函数f(x)=
1
4
x2+
1
2
x
在[-1,1]上是否是“收缩”函数,并说明理由;
(2)是否存在k∈R,使得f(x)=
k
x+2
在[-1,+∞)上为“收缩”函数,若存在,求k的范围;若不存在,说明理由;
(3)若D=[0,1],且f(0)=f(1),且f(x)为“收缩”函数,问|f(x1)-f(x2)|≤
1
2
能否成立,说明理由.

查看答案和解析>>

同步练习册答案