精英家教网 > 高中数学 > 题目详情
16.已知sin(α+$\frac{π}{6}$)+cosα=$\frac{4}{5}$$\sqrt{3}$,则cos(2α+$\frac{2π}{3}$)的值为(  )
A.-$\frac{7}{25}$B.$\frac{7}{25}$C.$\frac{9}{25}$D.-$\frac{9}{25}$

分析 由条件利用两角和差的正弦公式求得sin(α+$\frac{π}{3}$)的值,再利用二倍角的余弦公式求得cos(2α+$\frac{2π}{3}$)的值.

解答 解:sin(α+$\frac{π}{6}$)+cosα=$\frac{\sqrt{3}}{2}$sinα+$\frac{1}{2}$cosα+cosα=$\frac{\sqrt{3}}{2}$sinα+$\frac{3}{2}$cosα=$\sqrt{3}$sin(α+$\frac{π}{3}$)=$\frac{4}{5}$$\sqrt{3}$,
∴sin(α+$\frac{π}{3}$)=$\frac{4}{5}$,
则cos(2α+$\frac{2π}{3}$)=1-2sin2(α+$\frac{π}{3}$)=1-2•$\frac{16}{25}$=-$\frac{7}{25}$,
故选:A.

点评 本题主要考查两角和差的正弦公式、二倍角的余弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.下列计算错误的是(  )
A.${∫}_{-π}^{π}$sinxdx=0B.${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cosxdx=2${∫}_{0}^{\frac{π}{2}}$cosxdx
C.${∫}_{-2}^{2}$$\sqrt{4-{x}^{2}}$dx=2πD.${∫}_{1}^{2}$$\frac{1}{x}$dx=$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.定义在(-1,0)∪(0,1)的偶函数f(x),满足f($\frac{1}{2}$)=0.当x>0时,总有($\frac{1}{x}$-x)f′(x)•ln(1-x2)>2f(x),则f(x)<0解集为$\{x丨-1<x<-\frac{1}{2}或\frac{1}{2}<x<1\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知cosα=$\frac{1}{3}$,且-$\frac{π}{2}$<α<0,则$\frac{sin(2π+α)}{cos(-α)ta{n}^{2}α}$=(  )
A.$\frac{\sqrt{2}}{2}$B.-$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{4}$D.-$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知实数x,y满足$\left\{\begin{array}{l}{x-y≥0}\\{x+y-5≤0}\\{y≥\frac{1}{4}{x}^{2}+\frac{1}{4}}\end{array}\right.$,则$\frac{(x+y)^{2}+{y}^{2}}{{x}^{2}+2{y}^{2}}$的最小值为$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{\begin{array}{l}{2(1-x),0≤x≤1}\\{x-1,1<x≤2}\end{array}\right.$,如果对任意的n∈N,定义fn(x)=$\frac{f\{f[f…f(f)]\}}{n个}$,那么f2016(2)的值为(  )(备注:里层括号内位f(x))
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=asinωx+bcosωx(ω>0)的图象如图所示,则f(0)+f(1)+f(2)+f(3)+…+f(2016)=
0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线C:$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1的右顶点为A,渐近线为l1,l2,点P为双曲线C的动点(与点A不重合),过点P作l1的平行线交l2于M,直线AP交l2于N,则|MN|=(  )
A.$\frac{3}{2}$B.2C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦点F1,F2,过右焦点F2的直线l与C相交于P、Q两点,若△PQF1的周长为短轴长的2$\sqrt{3}$倍.
(Ⅰ)求C的离心率;
(Ⅱ)设l的斜率为1,在C上是否存在一点M,使得$\overrightarrow{OM}=2\overrightarrow{OP}+\overrightarrow{OQ}$?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案