精英家教网 > 高中数学 > 题目详情
6.某少数民族的刺绣有着悠久的历史,如图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.
(1)由图归纳出f(n)与f(n-1)的关系式,并求出f(n)表达式;
(2)求证:$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$+$\frac{1}{f(3)-1}$+…+$\frac{1}{f(n)-1}$$<\frac{3}{2}$.

分析 (1)总结一般性的规律,可知f(n+1)-f(n)=4n,利用叠加法,可求f(n)的表达式;
(2)根据通项特点,利用裂项法求和,即可得到解决.

解答 (1)解:∵f(2)-f(1)=4=4×1,f(3)-f(2)=8=4×2,
f(4)-f(3)=12=4×3,f(5)-f(4)=16=4×4,
由上式规律得出f(n+1)-f(n)=4n.
∴f(n)-f(n-1)=4(n-1),f(n-1)-f(n-2)=4•(n-2),
f(n-2)-f(n-3)=4•(n-3),…
f(2)-f(1)=4×1,∴f(n)-f(1)=4[(n-1)+(n-2)+…+2+1]=2(n-1)•n,∴f(n)=2n2-2n+1(n≥2),又n=1时,f(1)也适合f(n).∴f(n)=2n2-2n+1.
(2)证明:当n≥2时,$\frac{1}{f(n)-1}$=$\frac{1}{2}$($\frac{1}{n-1}$-$\frac{1}{n}$),
∴$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$+$\frac{1}{f(3)-1}$+…+$\frac{1}{f(n)-1}$=1+$\frac{1}{2}$(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n-1}$-$\frac{1}{n}$)=$\frac{3}{2}-\frac{1}{2n}$<$\frac{3}{2}$.

点评 本题主要考查归纳推理,其基本思路是先分析具体,观察,总结其内在联系,得到一般性的结论,(2)问考查了裂项法求数列的和,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.在△ABC中,a=3,b=4,sinA=$\frac{1}{3}$,则sinB=(  )
A.$\frac{1}{4}$B.$\frac{5}{9}$C.$\frac{1}{12}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,网格纸上小正方形的边长为1,图中粗线画出的是某零件的三视图,该零件由一个棱长为4的正方体毛坯切削得到,则切削掉部分的体积与原毛坯体积的比值为(  )
A.$\frac{3}{8}$B.$\frac{5}{8}$C.$\frac{5}{12}$D.$\frac{7}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{8}{3}$B.$\frac{11}{3}$C.4D.$\frac{14}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数y=acosx+b的最大值为1,最小值为-3,试确定$f(x)=bsin(ax+\frac{π}{3})$的递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数$f(x)=\frac{2}{x}+lnx$,给出如下四个命题:
①x=2是f(x)的极小值点;
②函数f(x)在(0,+∞)上存在唯一的零点;
③存在正实数k,使得f(x)>kx恒成立;
④对任意两个正实数x1,x2,且x1<x2,若f(x1)=f(x2),则x1+x2>4.
其中的真命题有①④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.2弧度圆心角所对的弦长为2sin1,则这个圆心角所夹扇形的面积为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知Sn为正项数列{an}的前n项和,且满足$2{S_n}={a_n}^2+{a_n}(n∈{N^*})$.
(1)求出a1,a2,a3,a4
(2)猜想{an}的通项公式并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知一只蚂蚁在边长为4的正三角形内爬行,则此蚂蚁到三角形三个顶点的距离均超过1的概率为(  )
A.$\frac{\sqrt{3}π}{12}$B.$\frac{\sqrt{3}π}{24}$C.1-$\frac{\sqrt{3}π}{12}$D.1-$\frac{\sqrt{3}π}{24}$

查看答案和解析>>

同步练习册答案