分析 先根据方程组中x,y的系数及常数项计算计算出D,Dx,Dy,下面对a的值进行分类讨论,并求出相应的解.
解答 解:方程组可转化为:$[\begin{array}{l}{a}&{-1}&{-1}\\{1}&{1}&{-a}\\{1}&{-1}&{-1}\end{array}]$$[\begin{array}{l}{x}\\{y}\\{z}\end{array}]$=$[\begin{array}{l}{1}\\{2}\\{1}\end{array}]$,
D=$|\begin{array}{l}{a}&{-1}&{-1}\\{1}&{1}&{-a}\\{1}&{-1}&{-1}\end{array}|$=1-a2=-(a+1)(a-1),
Dx=$|\begin{array}{l}{1}&{-1}&{-1}\\{2}&{1}&{-a}\\{1}&{-1}&{-1}\end{array}|$=-4(a+1)(a-1),
Dy=$|\begin{array}{l}{a}&{1}&{-1}\\{1}&{2}&{-a}\\{1}&{1}&{-1}\end{array}|$=-(a-1)(a-3)
Dz=$|\begin{array}{l}{a}&{1}&{1}\\{1}&{1}&{2}\\{1}&{-1}&{1}\end{array}|$=4(a-1)
①当系数行列式丨A丨≠0时,方程组有唯一解,
当a≠±1时,有唯一解$\left\{{\begin{array}{l}{x=0}\\{y=-\frac{a-2}{a+1}}\\{z=-\frac{3}{a+1}}\end{array}}\right.$
②当a=-1时,无解
③当a=1时,有无穷多解,通解为$\left\{{\begin{array}{l}{x=t+\frac{3}{2}}\\{y=\frac{1}{2}}\\{z=t}\end{array}}\right.$.
点评 本题考查三元一次方程组得矩阵形式、线性方程组解得存在性,唯一性、三元一次方程的解法等基础知识,考查运算能力与转化思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 90° | B. | 60° | C. | 30° | D. | 150° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{3}$ | B. | 2$\sqrt{2}$ | C. | 4$\sqrt{3}$ | D. | 4$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com