精英家教网 > 高中数学 > 题目详情
在△ABC中,a、b、c分别是角A、B、C所对的边,且asinA+(a+b)sinB=csinC.
(Ⅰ)求角C;
(Ⅱ)若c=1,求△ABC的周长l的取值范围.
考点:余弦定理的应用,正弦定理的应用
专题:计算题,解三角形
分析:(Ⅰ)知等式利用正弦定理化简得到关系式,再利用余弦定理表示出cosC,将得出的关系式代入求出cosC的值,即可确定出角C;
(Ⅱ)余弦定理得,c2=a2+b2-2abcos120°=a2+b2+ab,再利用基本不等式,可得a+b≤
2
3
3
,即可求△ABC的周长l的取值范围.
解答: 解:(Ⅰ)已知等式asinA+(a+b)sinB=csinC,利用正弦定理化简得:a2+b2-c2=-ab,
∴cosC=-
1
2

∵C为三角形内角,
∴C=
3

(Ⅱ)由余弦定理得,c2=a2+b2-2abcos120°=a2+b2+ab,
而c=1,故1=(a+b)2-ab≥(a+b)2-(
a+b
2
)2
=
3
4
(a+b)2
∴a+b≤
2
3
3

又a+b>c=1,
∴2<a+b+c≤
2
3
3
+1,
即2<l≤
2
3
3
+1.
点评:此题考查了正弦、余弦定理,以及三角形的周长的计算,熟练掌握公式及定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

试比较函数y=x2与函数y=xlnx在区间(1,+∞)上的增长快慢.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD的底面为菱形,PA⊥面ABCD,且PA=AB,∠BAD=60°,E、F分别是PA、BC的中点.
(Ⅰ)求证:BE∥平面PDF;
(Ⅱ)过BD作一平面交棱PC于点M,若二面角M-BD-C的大小为60°,求
CM
MP
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求值:
(1)已知a+b=9,a2+b2=21,求ab.
(2)已知a+
1
a
=10,求a2+
1
a2
的值.
(3)已知a-
1
a
=3,求a2+
1
a2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图给出的是计算
1
2
+
1
4
+
1
6
+…+
1
20
的值的一个程序框图,判断框中应该填入的条件是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集为U,用集合A、B的交集、并集、补集分别表示如图韦恩图中Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,其中,Ⅲ部分能否表示成∁B(A∩B)?

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=3cos2
ωx
2
+
3
2
sinωx-
3
2
(ω>0)在一个周期内的图线如图,A为图象的最高点,B、C为图线与x轴的交点,且△ABC为正三角形.
(Ⅰ)求f(x)的解析式;
(Ⅱ)将f(x)的图象向右平移一个单位长度后得到函数g(x)的图象,若x∈[0,2],求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A1B1C1D1中,过顶点A并与正方体的12条棱所在的直线所成的角均相等的一个平面是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,BC=1,AB=
3
,AC=
6
,点P是△ABC的外接圆上的一个动点,则
BP
BC
的最大值为
 

查看答案和解析>>

同步练习册答案