精英家教网 > 高中数学 > 题目详情

【题目】德国数学家莱布尼兹(1646年-1716)1674年得到了第一个关于π的级数展开式,该公式于明朝初年传入我国.在我国科技水平业已落后的情况下,我国数学家天文学家明安图(1692年-1765)为提高我国的数学研究水平,从乾隆初年(1736)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有《割圆密率捷法》一书,为我国用级数计算π开创了先河.如图所示的程序框图可以用莱布尼兹“关于π的级数展开式”计算π的近似值(其中P表示π的近似值),若输入,则输出的结果是( )

A.B.

C.D.

【答案】B

【解析】

执行给定的程序框图,输入,逐次循环,找到计算的规律,即可求解.

由题意,执行给定的程序框图,输入,可得:

1次循环:

2次循环:

3次循环:

10次循环:

此时满足判定条件,输出结果

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市垃圾处理厂的垃圾年处理量(单位:千万吨)与资金投入量x(单位:千万元)有如下统计数据:

2012

2013

2014

2015

2016

资金投入量x(千万元)

1.5

1.4

1.9

1.6

2.1

垃圾处理量y(千万吨)

7.4

7.0

9.2

7.9

10.0

1)若从统计的5年中任取2年,求这2年的垃圾处理量至少有一年不低于8.0(千万吨)的概率;

2)由表中数据求得线性回归方程为,该垃圾处理厂计划2017年的垃圾处理量不低于9.0千万吨,现由垃圾处理厂决策部门获悉2017年的资金投入量约为1.8千万元,请你预测2017年能否完成垃圾处理任务,若不能,缺口约为多少千万吨?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且满足,设,则以下四个命题:(1是等差数列;(2中最大项是;(3通项公式是;(4.其中真命题的序号是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的单调区间;

2)若不等式对任意的正实数都成立,求实数的最大整数值.

3)当时,若存在实数,使得,求证.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求曲线在点处的切线方程;

)求函数的单调区间;

)若对任意的,都有成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列关于独立性检验的叙述

①常用等高条形图表示列联表数据的频率特征;

②独立性检验依据小概率原理;

③独立性检验的结果是完全正确的;

④对分类变量的随机变量的观测值来说,越小,有关系的把握程度就越大.

其中叙述正确的个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是边长为2的菱形,的中点.

1)证明:平面

2)设是线段上的动点,当点到平面距离最大时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,的中点,的交点.将沿折起到的位置,如图

)证明:平面

)若平面平面,求平面与平面夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年起,部分省、市陆续实施了新高考,某省采用了“”的选科模式,即:考试除必考的语、数、外三科外,再从物理、化学、生物、历史、地理、政治六个学科中,任意选取三科参加高考,为了调查新高考中考生的选科情况,某地区调查小组进行了一次调查,研究考生选择化学与选择物理是否有关.已知在调查数据中,选物理的考生与不选物理的考生人数相同,其中选物理且选化学的人数占选物理人数的,在不选物理的考生中,选化学与不选化学的人数比为.

1)若在此次调查中,选物理未选化学的考生有100人,试完成下面的列联表:

选化学

不选化学

合计(人数)

选物理

不选物理

合计(人数)

2)根据第(1)问的数据,能否有99%把握认为选择化学与选择物理有关?

3)若研究得到在犯错误概率不超过0.01的前提下,认为选化学与选物理有关,则选物理又选化学的人数至少有多少?(单位:千人;精确到0.001

附:.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步练习册答案