精英家教网 > 高中数学 > 题目详情
若正项数列{an}满足a2=
1
2
,a6=
1
32
,且
an+1
an
=
an
an-1
(n≥2,n∈N),则log2a4=
 
考点:等比关系的确定
专题:等差数列与等比数列
分析:根据数列的递推关系得到数列{an}为等比数列,结合等比数列的性质求出a4的值即可.
解答: 解:∵
an+1
an
=
an
an-1
(n≥2,n∈N),
∴数列{an}为等比数列,
∵a2=
1
2
,a6=
1
32

∴a42=a2a6=
1
2
×
1
32
=
1
64

则a4=
1
8

则log2a4=log2
1
8
=-3,
故答案为:-3.
点评:本题主要考查等比数列的通项公式的应用,根据条件判断数列是等比数列是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y=
1
4
x2的焦点为F,定点M(1,2),点A为抛物线上的动点,则|AF|+|AM|的最小值为(  )
A、
3
2
B、
5
2
C、3
D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

若是定义在R上的奇函数,当x<0时,f(x)=x(x+1),试求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,an+1=
2an
an+2
(n∈N*),则a3的值为(  )
A、
2
5
B、
1
3
C、
2
3
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,双曲线C1
x2
a2
-
y2
b2
=1,(a>0,b>0)的左、右焦点分别为F1,F2,抛物线C2的顶点为坐标原点O,焦点为F2,过F1的直线与抛物线C2的一个交点为A,与圆x2+y2=a2相切于点M,若线段F1A的中点恰为M,则双曲线C1的离心率为(  )
A、
1+
5
2
B、
1+
3
2
C、
5
2
D、
3+
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)在x∈[a,b]时,函数值y的取值区间恰为[
1
b
1
a
],就称区间[a,b]为f(x)的一个“倒域区间”.定义在[-2,2]上的奇函数g(x),当x∈[0,2]时,g(x)=-x2+2x.
(1)求g(x)的解析式;
(2)求函数g(x)在[1,2]内的“倒域区间”;
(3)若函数g(x)在定义域内所有“倒域区间”上的图象作为函数y=h(x)的图象,是否存在实数m,使集合{(x,y)|y=h(x)}∩{(x,y)|y=x2+m}恰含有2个元素.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,定义点P(x1,y1)、Q(x2,y2)之间的“直角距离”为L(P,Q)=|x1-x2|+|y1-y2|,已知点A(x,1)、B(1,2)、C(5,2)三点.
(1)若L(A,B)>L(A,C),求x的取值范围;
(2)当x∈R时,不等式L(A,B)≤t+L(A,C)恒成立,求t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

y=
3x2-x
x
+5
x
-9
x
,则y′=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C,所对的边分别是a,b,c,向量
p
=(2b-c,cosC),
q
=(2a,1),且
p
q
,求∠A的大小.

查看答案和解析>>

同步练习册答案