ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒS10£ºS5=1£º2£¬ÓÖ¶þ´Îº¯Êýy=
S15
S10
x2+
13
4
x+5µÄµ¼º¯ÊýÉÏÓÐһϵÁеãP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬¡­£¬Pn£¨xn£¬yn£©£¬¡­£¬n¡Ý1£¬n¡ÊN£¬ÇÒµãPnµÄºá×ø±ê¹¹³ÉµÈ²îÊýÁÐ{xn}£¬ÇÒx3=-
9
2
£¬x5=-
13
2
£®
£¨1£©Çó¶þ´Îº¯Êý½âÎöʽ¼°µãPnµÄ×ø±ê£»
£¨2£©ÉèÅ×ÎïÏßÁÐC1£¬C2£¬C3£¬¡­£¬Cn£¬¡­ÖеÄÿһÌõµÄ¶Ô³ÆÖá¶¼´¹Ö±ÓÚxÖᣬÅ×ÎïÏßCnµÄ¶¥µãΪPn£¬ÇÒ¹ýµãDn£¨0£¬n2+1£©£¬¼ÇÓëÅ×ÎïÏßCnÏàÇÐÓÚµãDnµÄÖ±ÏßµÄбÂÊΪkn£¬ÇóÖ¤£º
1
k1k2
+
1
k2k3
+¡­+
1
kn-1kn
£¼
1
10
£®
£¨3£©ÉèS={x|x=2xn£¬n¡ÊN*}£¬T={y|y=4yn£¬n¡ÊN*}£¬µÈ²îÊýÁÐ{an}µÄÈÎÒ»Ïîan£¬¡ÊS¡ÉT£¬ÆäÖÐa1ÊÇS¡ÉTÖеÄ×î´óÊý£¬-265£¼a10£¼-125£¬ÇóÊýÁÐ{an}µÄͨÏʽ£®
¿¼µã£ºÊýÁÐÓë½âÎö¼¸ºÎµÄ×ÛºÏ
רÌ⣺µ¼ÊýµÄ¸ÅÄî¼°Ó¦ÓÃ,µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ,¼¯ºÏ
·ÖÎö£º£¨1£©ÔËÓõȱÈÊýÁеÄÇóºÍ¹«Ê½ÇóµÃq5=-
1
2
£¬ÔÙ´úÈë¶þ´Îº¯Êýʽ£¬»¯¼ò¿ÉµÃ½âÎöʽ£¬Çó³öyµÄµ¼Êý£¬ÔËÓõȲîÊýÁеÄͨÏ¼´¿ÉµÃµ½xn£¬½ø¶øµÃµ½ÓÐyn£»
£¨2£©ÔËÓôý¶¨ÏµÊý·¨ÇóµÃÅ×ÎïÏßCnµÄ½âÎöʽ£¬ÔÙÇóµ¼Êý£¬µÃµ½ÇÐÏßµÄбÂÊ£¬ÔÙÓÉÁÑÏîÏàÏûÇóºÍ£¬¼´¿ÉµÃÖ¤£»
£¨3£©Çó³ö¼¯ºÏS£¬T£¬ÇóµÃ½»¼¯£¬½áºÏÌõ¼þ£¬ÇóµÃÊýÁеÄÊ×ÏÔÙÓɵȲîÊýÁеÄͨÏʽ£¬¼´¿ÉµÃµ½£®
½â´ð£º £¨1£©½â£ºµÈ±ÈÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒS10£ºS5=1£º2£¬
ÏÔÈ»¹«±È²»Îª1£¬Ôò
a1(1-q10)
1-q
£º
a1(1-q5)
1-q
=1£º2£¬
»¯¼òµÃ1+q5=
1
2
£¬¼´q5=-
1
2
£¬Ôò
S15
S10
=
1-q15
1-q10
=
1+
1
8
1-
1
4
=
3
2
£¬
¼´Óжþ´Îº¯Êýy=
3
2
x2+
13
4
x+5£¬y¡ä=3x+
13
4
£¬
µÈ²îÊýÁÐ{xn}£¬ÇÒx3=-
9
2
£¬x5=-
13
2
£¬Ôò¹«²îd=
x5-x3
5-3
=-1£¬
Ôòxn=-
9
2
-£¨n-3£©=-n-
3
2
£¬
¼´ÓÐyn=3£¨-n-
3
2
£©+
13
4
=-3n-
5
4
£¬
Ôò¶þ´Îº¯Êý½âÎöʽy=
3
2
x2+
13
4
x+5£¬µãPnµÄ×ø±êΪ£¨-n-
3
2
£¬-3n-
5
4
£©£»
£¨2£©Ö¤Ã÷£ºÉèÅ×ÎïÏßCn£ºy-yn=a£¨x-xn£©2£¬
ÓÉ£¨1£©¿ÉµÃy+3n+
5
4
=a£¨x+n+
3
2
£©2£¬
Áîx=0£¬Ôòy=a£¨n+
3
2
£©2-3n-
5
4
=n2+1£¬
½âµÃa=1£¬¼´ÓÐy=£¨x+n+
3
2
£©2-£¨3n+
5
4
£©£¬
y¡ä=2£¨x+n+
3
2
£©£¬¼´ÓÐkn=2n+3£¬
ÓÉ
1
kn-1kn
=
1
(2n+1)(2n+3)
=
1
2
£¨
1
2n+1
-
1
2n+3
£©£¬
ÔòÓÐ
1
k1k2
+
1
k2k3
+¡­+
1
kn-1kn
=
1
2
¡Á£¨
1
5
-
1
7
+
1
7
-
1
9
+¡­+
1
2n+1
-
1
2n+3
£©
=
1
2
¡Á£¨
1
5
-
1
2n+3
£©£¼
1
10
£»
£¨3£©½â£ºS={x|x=2xn=-2n-3£¬n¡ÊN*}£¬T={y|y=4yn=-12n-5£¬n¡ÊN*}£¬
¿ÉµÃS¡ÉT=T£¬TÖÐ×î´óµÄΪ-17£¬
µÈ²îÊýÁÐ{an}µÄÈÎÒ»Ïîan¡ÊS¡ÉT£¬ÆäÖÐa1ÊÇS¡ÉTÖеÄ×î´óÊý£¬
Ôò¹«²îdΪ-12µÄÕýÕûÊý±¶£¬ÇÒa1=-17£¬
ÓÉ-265£¼a10£¼-125£¬¿ÉµÃ-265£¼-17+9d£¼-125£¬
½âµÃ-
248
9
£¼d£¼-12£¬¿ÉµÃd=-24£¬
¼´ÓÐan=-17+£¨n-1£©•£¨-24£©=-24n+7£®
µãÆÀ£º±¾Ì⿼²éµÈ²îÊýÁк͵ȱÈÊýÁеÄͨÏîºÍÇóºÍ¹«Ê½µÄÔËÓ㬿¼²éÊýÁеÄÇóºÍ·½·¨£ºÁÑÏîÏàÏûÇóºÍ£¬¿¼²éµ¼ÊýµÄ¼¸ºÎÒâÒ壺ÇúÏßÔڸõ㴦ÇÐÏßµÄбÂÊ£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌâºÍÒ×´íÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªa£¬b£¬c·Ö±ðΪ¡÷ABCµÄÈý¸öÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß£¬Èôa=2
3
£¬b=2
2
£¬A=60¡ã£¬Ôò½ÇBµÈÓÚ£¨¡¡¡¡£©
A¡¢45¡ã»ò135¡ãB¡¢135¡ã
C¡¢60¡ãD¡¢45¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¡°cos2¦Á=-
3
2
¡±ÊÇ¡°¦Á=k¦Ð+
5¦Ð
12
£¬k¡ÊZ
¡±µÄ£¨¡¡¡¡£©
A¡¢³ä·Ö²»±ØÒªÌõ¼þ
B¡¢±ØÒª²»³ä·ÖÌõ¼þ
C¡¢³äÒªÌõ¼þ
D¡¢¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈôiΪÐéÊýµ¥Î»£¬Ôòi+i2+i3+i4µÄֵΪ£¨¡¡¡¡£©
A¡¢-1B¡¢iC¡¢0D¡¢1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¼¯ºÏA={-2£¬0£¬1}£¬B={0£¬1£¬2}£¬ÔòA¡ÈBµÈÓÚ£¨¡¡¡¡£©
A¡¢{0£¬1}
B¡¢{-2£¬0£¬1}
C¡¢{-2£¬0£¬1£¬2}
D¡¢{-2£¬2}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÊýÁÐ{an}ÖУ¬a1=
1
2
£¬ÇÒ(n+1)an+1=
nan
nan+1
£¨n¡ÊN*£©£¬ÔòÊýÁÐ{an}µÄǰ2014ÏîµÄºÍΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬a1=1£¬ÇÒSn=n£¨Sn+1+an+1£©£¨n¡ÊN+£©£®
£¨1£©ÇóSn£»
£¨2£©Èô´æÔÚn¡Ý2£¬Ê¹Sn-1¦ËSn£¬Sn+1³ÉµÈ²îÊýÁУ¬ÇóÕýÕûÊý¦ËµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ò»¸ö°ë¾¶Îª1µÄÇòÌå¾­¹ýÇиîºó£¬Ê£Óಿ·Ö¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
A¡¢16¦Ð
B¡¢14¦Ð
C¡¢4¦Ð
D¡¢
8
3
¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=
2
x
+alnx-2£¨a£¾0£©£®
£¨¢ñ£©µ±a=1ʱ£¬Çóº¯Êýy=f£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨¢ò£©Èô¶ÔÓÚ?x¡Ê£¨0£¬+¡Þ£©¶¼ÓÐf£¨x£©£¾2£¨a-1£©³ÉÁ¢£¬ÊÔÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸