精英家教网 > 高中数学 > 题目详情
13.抛物线x2=4y上一点P到焦点的距离为3,则点P到y轴的距离为2$\sqrt{2}$.

分析 先根据抛物线方程求得焦点坐标及准线方程,进而根据抛物线的定义可知点p到焦点的距离与到准线的距离相等,进而推断出yp+1=2,求得yp,代入抛物线方程即可求得点p的横坐标即可.

解答 解:根据抛物线方程可求得焦点坐标为(0,1),准线方程为y=-1,
根据抛物线定义,
∴yp+1=3,
解得yp=2,代入抛物线方程求得x=±2$\sqrt{2}$,
∴点P到y轴的距离为2$\sqrt{2}$,
故答案为:2$\sqrt{2}$.

点评 本题主要考查抛物线的定义:抛物线上的点到焦点距离与到准线距离相等,常可用来解决涉及抛物线焦点的直线或焦点弦的问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图,在四棱锥P-ABCD中,侧面PAB⊥底面ABCD,底面ABCD是边长为2的正方形,PA=PB,E为PC上的点,且BE⊥平面PAC.
(Ⅰ)求证:PA⊥平面PBC
(Ⅱ)求二面角P-AC-B的正弦值;
(Ⅲ)求点D到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在等差数列{an}中,已知a1=3,a4=5,则a7等于7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.给出下列四个命题:
①由样本数据得到的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$必过样本点的中心(${\overline x$,$\overline y}$);
②用相关指数R2来刻画回归效果,R2的值越小,说明模型的拟合效果越好;
③若线性回归方程为$\hat y$=3-2.5x,则变量x每增加1个单位时,y平均减少2.5个单位;
④在残差图中,残差点分布的带状区域的宽度越窄,残差平方和越小.
上述四个命题中,正确命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.由y=$\frac{1}{x}$,x轴及x=1,x=2围成的图形的面积为(  )
A.ln2B.lg2C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设点A(1,-2),B(3,m),C(-1,4),若$\overrightarrow{AC}$•$\overrightarrow{CB}$=4,则实数m的值为(  )
A.6B.-5C.4D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.有一段“三段论”推理是这样的:对于定义域内可导函数f(x),如果总有f′(x)<0,那么f(x)在定义域内单调递减;因为函数f(x)=$\frac{1}{x}$满足在定义域内导数值恒负,所以,f(x)=$\frac{1}{x}$在定义域内单调递减,以上推理中(  )
A.大前提错误B.小前提错误C.推理形式错误D.结论正确

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.对具有线性相关关系的两个变量x,y,观测得到一组数据如表:
x-8-435
y197-3-9
若y与x的线性回归方程为的值为$\stackrel{∧}{y}$=-2x+$\stackrel{∧}{a}$,则$\stackrel{∧}{a}$的值为1.5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,在正方体ABCD-A1B1C1D1中,二面角D1-AB-D的 大小是(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{π}{2}$

查看答案和解析>>

同步练习册答案