精英家教网 > 高中数学 > 题目详情
7.若关于x的不等式-$\frac{1}{2}$x2+2x>mx的解集为(0,2),求实数m的值.

分析 利用不等式的解集为(0,2)得到二次不等式所对应的方程的根,求方程的根即可得到m的值.

解答 解:若关于x的不等式$-\frac{1}{2}{x^2}+2x>mx$的解集为(0,2),则0,2是$-\frac{1}{2}{x^2}+2x=mx$的根.即为x2+2(m-2)x=0的根,
∴0+2=2(2-m),解得m=1,
所以m=1.

点评 本题考查了一元二次不等式的解法,考查了“三个二次”的结合,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.$cos(\frac{19π}{3})$的值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.记函数f(x)=$\sqrt{(x+1)(x-1)}$的定义域为A,函数g(x)=lg[(x-a-1)(2a-x)](a<1)的定义域为B
(1)求A、B; 
(2)若B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.cos(-2640°)+sin1665°=(  )
A.$\frac{{1+\sqrt{3}}}{2}$B.-$\frac{{1+\sqrt{3}}}{2}$C.$\frac{{1+\sqrt{2}}}{2}$D.-$\frac{{1+\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.不等式(3x+1)(2x-1)>0的解集是(  )
A.$\{x|x<-\frac{1}{3}或x>\frac{1}{2}\}$B.$\{x|-\frac{1}{3}<x<\frac{1}{2}\}$C.$\{x|x>\frac{1}{2}\}$D.$\{x|x>-\frac{1}{3}\}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.由曲线y=cosx,x=$\frac{π}{2}$,x=$\frac{3π}{2}$,y=0围成的封闭图形的面积为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在三角形ABC中,点D是线段BC中点,点F在线段CD上,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,z=$\frac{1}{x}$+$\frac{4}{y}$,若$\overrightarrow{AF}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$,求z最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,阴影部分的面积是(  )
A.2$\sqrt{3}$B.-2$\sqrt{3}$C.$\frac{32}{3}$D.$\frac{35}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=sinx-$\sqrt{3}$cosx的图象的一条对称轴方程是(  )
A.x=$\frac{π}{6}$B.x=$\frac{π}{3}$C.x=$\frac{2π}{3}$D.x=$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案