精英家教网 > 高中数学 > 题目详情
11.若函数f(x)=$\frac{{2}^{x}+1}{{2}^{x}-a}$是奇函数,则使f(x)>3成立的x的取值范围为(0,1).

分析 ∨根据f(x)为奇函数,便有f(-x)=-f(x),从而可以求出a=1,从而得到f(x)=1+$\frac{2}{{2}^{x}-1}$,容易判断该函数在(0,+∞)上单调递减,并可判断x<0时,f(x)<1,且f(1)=3,从而可由f(x)>3得到f(x)>f(1),从而便得到0<x<1,这便求出了使f(x)>3成立的x的取值范围.

解答 解:f(x)为奇函数,∴f(-x)=-f(x),⇒$\frac{{{2}^{-}}^{x}+1}{{x}^{-x}-a}=-\frac{{2}^{x}+1}{{2}^{x}-a}$⇒∴1-a•2x=a-2x,∴a=1;
∴f(x)=1+$\frac{2}{{2}^{x}-1}$,
①x>0时,x增大时,2x-1增大,从而f(x)减小;
∴f(x)在(0,+∞)上单调递减;
∴由f(x)>3得,f(x)>f(1);
解得0<x<1;
②x<0时,2x-1<0,∴f(x)<1;
∴不满足f(x)>3;
综上所述,使f(x)>3的x的取值范围为(0,1).
故答案为:(0,1).

点评 考查奇函数的定义,根据单调性定义判断函数单调性的方法,指数函数的单调性,以及根据减函数的定义解不等式的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.将扑克牌4种花色的A,K,Q共12张洗匀.
(1)甲从中任意抽取2张,求抽出的2张都为A的概率;
(2)若甲已抽到了2张K后未放回,求乙抽到2张A的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果z是3+4i的共轭复数,则z对应的向量$\overrightarrow{OA}$的模是(  )
A.1B.$\sqrt{7}$C.$\sqrt{13}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知A点坐标为$(-2\sqrt{3},0)$,B点坐标为$(2\sqrt{3},0)$,且动点M到A点的距离是8,线段MB的垂直平分线l交线段MA于点P.
(Ⅰ)求动点P的轨迹C方程.
(Ⅱ) 已知A(2,-1),过原点且斜率为k(k>0)的直线l与曲线C交于P,Q两点,求△APQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=ax+1+1的图象恒过定点P,则点P的坐标是(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,①y=sinx+tanx-x;②y=sin2x+cosx;③y=sin|x|;④$y=3sin2({x+\frac{π}{4}})$,属于偶函数的有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列给出的函数中,既不是奇函数也不是偶函数的是(  )
A.$y=\frac{2}{x}$B.y=x3C.y=-x2D.$y=\sqrt{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列各组函数表示相等函数的是(  )
A.$f(x)={({\sqrt{x}})^2}$和$g(x)=\sqrt{x^2}$B.$f(x)={({\root{3}{x+1}})^3}$和$g(x)=\root{3}{{{{({x+1})}^3}}}$
C.f(x)=2lgx和g(x)=lg x2D.f(x)=ln x-ln(x-1)和$g(x)=ln\frac{x}{x-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=2sin(ωx+φ),(ω>0,0≤φ<2π)的部分图象如图所示,则f(x)=2sin(3x+$\frac{5π}{4}$).

查看答案和解析>>

同步练习册答案