精英家教网 > 高中数学 > 题目详情
14.已知f(x+1)=4x+3,则f(x)=4x-1.

分析 把x+1看作一个整体,化简f(x+1)即可.

解答 解:因为f(x+1)=4x+3=4(x+1)-1,
所以f(x)=4x-1.
故答案为:4x-1.

点评 本题考查了函数求函数解析式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知x,y满足约束条件$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}≤4}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$,则z=3x+y的最大值为(  )
A.2$\sqrt{10}$B.$\sqrt{5}$C.2D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.先后掷两次正方体骰子(骰子的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为m,n,则mn是偶数的概率为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某化工厂为预测某产品的销售量y,需要研究它与某原料有效成分含量x之间的相关关系,现取了8对观测值,计算得:$\sum_{i=1}^{8}$xi=48,$\sum_{i=1}^{8}$yi=144,回归直线方程为$\widehat{y}$=a+2.5x,则当x=10时,y的预测值为(  )
A.28B.27.5C.26D.25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.用反证法证明某命题时,对结论“a、b、c、d中至少有三个是正数”正确的反设是(  )
A.a、b、c、d中至多有三个是正数B.a、b、c、d中至多有两个是正数
C.a、b、c、d都是正数D.a、b、c、d都是负数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知复数z1满足(z1+3)(1-2i)=8+4i(i为虚数单位),复数z2的虚部为-3,若z1•z2是纯虚数.
(1)求z1和z2
(2)若复数|z|=2,求|z-z2|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.命题p:函数f(x)=lg(ax2-2ax+1)的定义域为R,命题q:不等式$\frac{\sqrt{3}}{4}$sinx+$\frac{1}{4}$cosx-a≥0的解集为∅,若“p∧q”为假命题且“p∨q”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.用反证法证明命题:若整系数方程ax2+bx+c=0(a≠0)存在有理根,那么a,b,c中至少有一个偶数,则应假设a,b,c都不是偶数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.由直线y=0,x=e,y=2x及曲线$y=\frac{2}{x}$所围成的封闭的图形的面积为(  )
A.3+2ln2B.3C.2e2-3D.e

查看答案和解析>>

同步练习册答案