精英家教网 > 高中数学 > 题目详情
12.函数f(x)=3ax2-2(a+c)x+c (a>0),设a>c>0,若f(x)>c2-2c+a 对x≥1恒成立,求c的取值范围.

分析 先求二次函数f(x)的对称轴x=$\frac{a+c}{3a}$,所以根据a>c>0可判断$\frac{a+c}{3a}<1$,所以得到函数f(x)在[1,+∞)上单调递增,最小值便为a-c.所以要使f(x)>c2-2c+a,对x≥1恒成立,所以只需最小值a-c>c2-2c+a,解不等式即得c的取值范围.

解答 解:f(x)的对称轴为x=$\frac{a+c}{3a}$;
∵a>c>0;
∴a+c<3a;
∴$\frac{a+c}{3a}<1$;
所以f(x)在[1,+∞)上单调递增,在该区间上的最小值为f(1)=a-c;
∴a-c>c2-2c+a;
即c2-c<0;
∴c∈(0,1);
即c的取值范围为(0,1).

点评 考查二次函数的对称轴,二次函数的单调性特点,以及根据函数的单调性求其最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.棱锥的三视图如图所示,且三个三角形均为直角三角形,则$\frac{1}{x}+\frac{1}{y}$的最小值为$\frac{2\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在正方体ABCD-A1B1C1D1中,二面角A1-BD-A的余弦值大小是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设数列{an}满足:a1=1,an+1=3an,n∈N*.设Sn为数列{bn}的前n项和,已知b1≠0,2bn-b1=S1•Sn,n∈N*
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=bn•log3an,求数列{cn}的前n项和Tn
(Ⅲ)证明:对任意n∈N*且n≥2,有$\frac{1}{{{a_2}-{b_2}}}$+$\frac{1}{{{a_3}-{b_3}}}$+…+$\frac{1}{{{a_n}-{b_n}}}$<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a>0,b>0,直线3x-4y=0是双曲线S:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1的一条渐近线,双曲线S的离心率为e,则$\frac{3e+{a}^{2}}{b}$的最小值为(  )
A.$\frac{3\sqrt{5}}{2}$B.$\frac{7\sqrt{5}}{2}$C.$\frac{11\sqrt{5}}{3}$D.$\frac{4\sqrt{15}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.化简:y=sin($\frac{π}{2}$+x)cos($\frac{π}{6}$-x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.使y=cosωx(ω>0)在区间[0,1]上至少出现2次最大值,至多出现3次最大值,则周期T的取值范围是(  )
A.1<T≤2B.1≤T≤2C.$\frac{1}{2}$<T≤1D.$\frac{1}{2}$≤T≤1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求证:$\frac{1}{n+1}$(1+$\frac{1}{3}$+…+$\frac{1}{2n-1}$)$>\frac{1}{n}$($\frac{1}{2}+\frac{1}{4}$+…+$\frac{1}{2n}$)(n∈N,n≥2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在空间直角坐标系O-xyz中,四面体ABCD的顶点坐标分别是(1,0,1),(1,1,0),(0,1,1)(0,0,0),则该四面体的正视图的面积不可能为(  )
A.$\frac{7}{8}$B.$\frac{{\sqrt{15}}}{4}$C.$\frac{{\sqrt{3}}}{2}$D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案