精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x﹣2sinx.
(Ⅰ)求函数f(x)在 上的最值;
(Ⅱ)若存在 ,使得不等式f(x)<ax成立,求实数a的取值范围.

【答案】解:(Ⅰ)f'(x)=1﹣2cosx,

x

y'

+

0

0

+

y

极大值

极小值


(Ⅱ)f(x)<ax,
∴2sinx﹣(1﹣a)x>0
设g(x)=2sinx﹣(1﹣a)x,则g'(x)=2cosx﹣(1﹣a)

①1﹣a≥2即a≤﹣1,此时g'(x)<0得出g(x)在 单调递减,g(x)<g(0)=0不成立
②1﹣a≤0即a≥1,此时g'(x)>0得出g(x)在 单调递增,g(x)>g(0)=0成立
③0<1﹣a<2即﹣1<a<1,令 ,存在唯一 ,使得 .当x∈(0,x0)时,g'(x)>0得出g(x)>g(0)=0,
∴存在 ,有g(x)>0成立
综上可知:a>﹣1
【解析】(1)求出导函数,得出极值点,根据极值点求闭区间函数的最值;(2)不等式整理得出2sinx﹣(1﹣a)x>0,构造函数,根据导函数进行分类讨论,即最大值大于零即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,a、b、c分别是角A、B、C的对边,且 =﹣
(Ⅰ)求角B的大小;
(Ⅱ)若b= ,a+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线经过点,且斜率为

(I)求直线的方程;

)若直线平行,且点P到直线的距离为3,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:

①甲地该月14时的平均气温低于乙地该月14时的平均气温;

②甲地该月14时的平均气温高于乙地该月14时的平均气温;

③甲地该月14时的平均气温的标准差小于乙地该月14时的平均气温的标准差;

④甲地该月14时的平均气温的标准差大于乙地该月14时的平均气温的标准差,

其中根据茎叶图能得到的统计结论的编号为( )

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱 中, , , 是棱上的动点.

证明:

若平面分该棱柱为体积相等的两个部分,试确定点的位置,并求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信是现代生活进行信息交流的重要工具,据统计,某公司名员工中的人使用微信,其中每天使用微信时间在一小时以内的有人,其余每天使用微信在一小时以上.若将员工年龄分成青年(年龄小于岁)和中年(年龄不小于岁)两个阶段,使用微信的人中是青年人.若规定:每天使用微信时间在一小时以上为经常使用微信,经常使用微信的员工中是青年人.

)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出列联表;


青年人

中年人

合计

经常使用微信




不经常使用微信




合计




)由列联表中所得数据,是否有的把握认为经常使用微信与年龄有关

)采用分层抽样的方法从经常使用微信的人中抽取人,从这人中任选人,求事件 选出的人均是青年人的概率.

附:







查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家射击队的某队员射击一次,命中7~10环的概率如表所示:

命中环数

10环

9环

8环

7环

概率

0.32

0.28

0.18

0.12

求该射击队员射击一次 求:

(1)射中9环或10环的概率;

(2)至少命中8环的概率;(3)命中不足8环的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,BC边上的高所在直线的方程为x2y10A的平分线所在的直线方程为y0.若点B的坐标为(1,2),求点A和点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱中, ,ACB=90°,M是 的中点,N是的中点.

Ⅰ)求证:MN∥平面

求点到平面BMC的距离

查看答案和解析>>

同步练习册答案