精英家教网 > 高中数学 > 题目详情
设n是奇数,x∈R,a,b分别表示(x-1)2n+1的展开式中系数大于0与小于0的项的个数,那么(  )
A、a=b+2B、a=b+1
C、a=bD、a=b-1
考点:二项式系数的性质
专题:二项式定理
分析:由条件利用二项式定理、二项式展开式的通项公式可得a=b=n+1,从而得出结论.
解答: 解:∵(x-1)2n+1的展开式的通项公式为Tr+1=
C
r
2n+1
•x2n+1-r•(-1)r,展开式共计有2n+2项,
故正项有a=n+1个,负项有b=n+1个,∴a=b,
故选:C.
点评:本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若数列{an}满足
an+2
an+1
-
an+1
an
=k(k为常数),则称{an}为等比数列,k叫公比差.已知{an}是以2为公比差的等比数列,其中a1=1,a2=2,则a5=(  )
A、16B、48
C、384D、1024

查看答案和解析>>

科目:高中数学 来源: 题型:

由曲线y=x与y=x2围成的封闭图形的面积为(  )
A、
1
2
B、
1
3
C、
1
4
D、
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是以1为首项、2为公差的等差数列,{bn}是以1为首项、2为公比的等比数列,则b a1+b a2+…+b a5等于(  )
A、85B、128
C、324D、341

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,有a3a11=4a7,数列{bn}是等差数列,且b4=a7,则b3+b5等于(  )
A、2B、4C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

直线ax+y=1的倾斜角120°,则a=(  )
A、
3
B、-
3
C、
3
3
D、-
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
9-x2
,则函数值域是(  )
A、[-3,3]
B、(-∞,3]
C、[0,3]
D、[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1的直角坐标方程为
x2
4
+y2=1,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,P是曲线C1上一点,∠xOP=α(0≤α≤π),将点P绕点O逆时针旋转角α后得到点Q,
OM
=2
OQ
,点M的轨迹是曲线C2
(1)求曲线C2的极坐标方程;
(2)求|OM|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线的顶点在坐标原点O,开口向上,等腰梯形ABCD下底AB的中点与坐标原点重合,上底DC∥x轴,等腰梯形的高是3,线段DC与抛物线相交于S,R,且SR=4,DA、AB、BC,分别于抛物线相切于点P、O、Q(如图所示)
(1)求抛物线的方程
(2)当上底DC多大时,梯形ABCD面积有最小值,并求其最小值.

查看答案和解析>>

同步练习册答案