精英家教网 > 高中数学 > 题目详情
直线ax+y=1的倾斜角120°,则a=(  )
A、
3
B、-
3
C、
3
3
D、-
3
3
考点:直线的倾斜角
专题:直线与圆
分析:根据直线倾斜角和斜率之间的关系即可得到结论.
解答: 解:直线的斜截式方程为y=-ax+1,则直线斜率k=-a,
∵直线ax+y=1的倾斜角120°,
∴k=tan120°=-a,
即-a=-
3
,解得a=
3

故选:A
点评:本题主要考查直线的斜率和倾斜角之间的关系,要求熟练掌握相应的关系式,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知|
a
|=2|
b
|≠0,且关于x的方程x2+|
a
|x+
3
3
a
b
=0有实根,则
a
b
的夹角的取值范围是(  )
A、[0,
π
6
]
B、[0,
π
3
]
C、[
π
6
,π]
D、[
π
3
,π]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
-1  x>0
1  x<0
,则
(a+b)+(a-b)•f(a-b)
2
(a≠b)的值为(  )
A、aB、b
C、a,b中较小的数D、a,b中较大的数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知gn(x)+1=
n
k=1
xn
k2
(x∈R,n∈N*),则下列说法正确的是(  )
①gn(x)关于点(0,-1)成中心对称.
②gn(x)在(0,+∞)单调递增.
③当n取遍N*中所有数时不可能存在c∈[
2
3
,1]使得gn(c)=0.
A、①②③B、②③C、①③D、②

查看答案和解析>>

科目:高中数学 来源: 题型:

设n是奇数,x∈R,a,b分别表示(x-1)2n+1的展开式中系数大于0与小于0的项的个数,那么(  )
A、a=b+2B、a=b+1
C、a=bD、a=b-1

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数是偶函数的是(  )
A、y=(x+1)2
B、y=|x|•x
C、y=2x+2-x
D、y=
x
x2+sinx

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C与双曲线
x2
2
-y2=1有相同的渐近线,且经过点(-3,2).
(1)求双曲线C的方程;
(2)求直线y=x+
3
被双曲线C所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知D、E分别在平面ABC的同侧,且DC⊥平面ABC,EB⊥平面ABC,DC=2,△ABC是边长为2的正三角形,F是AD中点.
(1)当BE等于多少时,EF∥平面ABC;
(2)当EF∥平面ABC时,求证CF⊥EF.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,PO⊥平面ABCD,点O在AB上,EA∥PO,四边形ABCD为直角梯形,BC⊥AB,PO=OB=BC=CD,EA=AO=
1
2
CD.
(Ⅰ)求证:PE⊥平面PBC;
(Ⅱ)求二面角E-BD-A的余弦值.

查看答案和解析>>

同步练习册答案